Чтение онлайн

на главную - закладки

Жанры

(Не)совершенная случайность. Как случай управляет нашей жизнью
Шрифт:

Да, Кетле обошел своим вниманием распределения другой вероятности, однако обиднее то, что ему не удалось осуществить свое намерение — значительно продвинуться в попытках раскрыть законы и силы, которым он отдал столько сил и времени. Поэтому в конце концов непосредственное влияние Кетле на социальные науки оказалось весьма скромным, однако его наследие невозможно переоценить, оно имело далеко идущие последствия. И не для социальных наук, а для наук естественных, где его подход к толкованию порядка в большом количестве случайных событий вдохновил многих ученых и послужил толчком к созданию революционного труда, трансформировавшего способ мышления и в биологии, и в физике.

Именно двоюродный брат Чарльза Дарвина применил статистический анализ в биологии. В 1840 г. Фрэнсис Гальтон, человек, располагавший временем, поступил в кембриджский Тринити-Колледж{177}. Поначалу он изучал медицину,

но затем по совету Дарвина занялся математикой. Ему было двадцать два, когда отец умер, в результате чего Фрэнсис унаследовал немалое состояние. Гальтону никогда не приходилось зарабатывать себе на жизнь, и он, оставаясь любителем, занялся наукой. Особенно его интересовали измерения. Он измерял человеческие головы, носы, руки и ноги, количество суетливых движений, которые слушатели совершали во время лекций, степень привлекательности девушек на улице (лондонские девушки получили самые высокие баллы, самые низкие оказались у девушек из шотландского Абердина). Он измерял характерные особенности отпечатков пальцев — потом, в 1901 г., эту практику распознавания по отпечаткам пальцев взяли на вооружение в Скотленд-Ярде. Он даже высчитал продолжительность жизни правителей и священников, которая оказалась такой же, как и у людей другого положения и рода деятельности, из чего Гальтон заключил: молитва в этом отношении не дает никаких преимуществ.

В своей книге 1869 г. под названием «Наследственность таланта. Законы и последствия» Гальтон написал: часть людей, выстроенных по росту, должна со временем сохранить практически то же соотношение, а принципу нормального распределения подчиняется не только рост, но и прочие физические признаки: окружность головы, размер мозга, вес серого вещества, количество мозговых нитей и так далее. Однако на этом Гальтон не остановился. Он верил, что и характер человека также задается наследственностью и, как и физические черты, подчиняется принципу нормального распределения. Согласно Гальтону, мужчины не «равны как ячейки общества, [не] каждый из них имеет право голоса и прочее»{178}. Гальтон утверждал: около 250 мужчин из каждого миллиона наследуют исключительные способности к тому или иному занятию и в результате добиваются в своей области значительных успехов. (Поскольку во времена Гальтона женщины не работали, для них он такой анализ не проводил.) Основываясь на этих идеях, Гальтон основал новую науку и назвал ее евгеникой: от греческих eu (хороший) и genos (рождение). Спустя годы принципами евгеники воспользовались совершенно разные люди в совершенно разных целях. Термин и некоторые концепции Гальтона переняли нацисты, однако нет никаких свидетельств тому, что сам Гальтон одобрил бы их кровавые замыслы. Он стремился найти способ, с помощью которого можно было бы улучшить человеческую породу посредством селекционного отбора.

Большая часть главы 9 посвящена выяснению причин, по которым простое причинно-следственное толкование Гальтоном успеха казалось таким привлекательным. Однако в главе 10 мы увидим, что из-за великого множества предсказуемых и случайных препятствий, которые нужно преодолеть, чтобы справиться с задачей любой сложности, связь между способностями и исполнением вовсе не такая прямая, чтобы идеи Гальтона ее объясняли. В последние годы психологи обнаружили: в плане достижения успеха способность преодолеть трудности не менее важна, чем наличие таланта{179}. Вот почему эксперты часто говорят о «правиле десяти лет», подразумевая, что для большинства занятий требуется как минимум десять лет напряженного труда, чтобы добиться значительных результатов. При мысли о том, что огромное значение имеет не только наличие врожденных способностей, но и прилагаемые усилия, в конце концов, удача, кто-то может и приуныть. Однако я смотрю на это совсем иначе: пусть наше генетическое «лицо» и не поддается контролю, мы можем прилагать усилия ровно в той степени, в какой считаем нужным. Да и с удачей все не так безнадежно: путем большого числа повторений мы можем повысить свои шансы на успех.

Какими бы ни были плюсы и минусы евгеники, исследования Гальтона в области наследственности привели к открытию двух математических понятий, которые являются центральными в современной статистике. Первое открытие Гальтон совершил в 1875 г., после того, как раздал семи друзьям пакетики со стручками душистого горошка. Каждый друг получил семена одинакового размера и веса, а вернул Гальтону семена уже следующих урожаев. Гальтон измерил семена: в среднем диаметр семян, уродившихся от мелких горошин, был больше, чем диаметр родителей. Позднее, подключив данные из лаборатории, основанной им в Лондоне, Гальтон заметил то же самое и в отношении роста уже людей: родителей и детей. Этот феномен — когда группа крайних результатов сопровождается результатами, которые в среднем менее экстремальны, — Гальтон назвал регрессией к среднему.

Вскоре Гальтону стало ясно: процессы, не подпадающие под определение регрессии к среднему, в конце концов выходят из-под контроля. Например, предположим, что сыновья высоких отцов в среднем будут такими же высокими, как и их отцы. Поскольку рост каждого разнится, некоторые сыновья окажутся выше. А теперь представим следующее поколение, и предположим, что сыновья более высоких сыновей, внуки, тоже в среднем такие же высокие, как и их отцы. Некоторые из них также будут выделяться ростом по сравнению с отцами. Таким образом, из поколения в поколение самые высокие будут становиться все выше и выше. Однако благодаря регрессии к среднему этого не происходит. То же самое можно сказать и о врожденных умственных способностях, художественном таланте или способности ловко бить по мячу в гольфе. Очень высоким родителям не следует ожидать таких же высоких детей, очень умным родителям не стоит ожидать, что их отпрыски будут семи пядей во лбу, а

многочисленные Пикассо и Тайгеры Вудсы [15] зря понадеются на то, что их прямые потомки сравняются с ними своим гением. С одной стороны, у очень приземистых родителей могут родиться высокие дети, так что те из нас, кто не может похвастать блестящим умом или не умеет рисовать, вполне могут надеяться на исправление этих недостатков в следующих поколениях.

15

Тайгер Вудс — известный игрок в гольф.

Через объявления Гальтон привлекал испытуемых в свою лабораторию, где проводил измерения: роста, веса, даже некоторых костей. Его целью было найти определенный метод, позволявший вычислять данные детей, основываясь на данных их родителей. На одном из графиков Гальтона были показаны данные по росту родителей и детей. Если, скажем, рост всегда был одним и тем же, получалась аккуратная прямая, поднимавшаяся под углом в 45 градусов. Если же это соотношение в целом сохранялось, однако индивидуальные данные отличались, возникал пунктир выше и ниже прямой. Таким образом, график Гальтона демонстрировал наглядно не только общее отношение между ростом родителей и детей, но и то, до какой степени это отношение сохранялось. Что является вторым важным открытием и вкладом в статистику: определение математического показателя, описывающего это отношение. Гальтон назвал этот показатель коэффициентом корреляции.

Коэффициент корреляции — это число между -1 и 1; если оно приближается к ±1, две переменные связаны между собой линейно; 0 же означает отсутствие связи. Например, данные показывают: наедаясь в «Макдоналдсе» на 1 тыс. калорий раз в неделю, человек поправляется на 4,5 кг в год, а съедая 1 тыс. калорий дважды в неделю, на 9 кг. И так далее. Коэффициент корреляции в таком случае равен 1. Если по какой-то причине каждый, наоборот, терял бы этот вес, коэффициент корреляции был бы равен -1. А если бы данные о прибавке в весе и его потере были бы разбросаны по всему графику и не зависели от потребления еды, коэффициент равнялся бы 0. В наше время понятие «коэффициент корреляции» — одно из самых широко употребимых в статистике. К примеру, оно используется для того, чтобы проследить связь между количеством выкуренных сигарет и раковых заболеваний, расстоянием звезд от Земли и скоростью, с которой они удаляются от нашей планеты, баллами, получаемыми студентами по унифицированным тестам, и доходом в семьях этих студентов.

Труд Гальтона имел значение не только благодаря своей непосредственной важности, но еще и потому, что подвиг на дальнейшие исследования в области статистики, в результате чего наука быстро развивалась и крепла. Важную роль тут сыграл Карл Пирсон, ученик Гальтона. Ранее в этой главе я упоминал множество различных типов данных, которые распределяются в соответствии с принципом нормального распределения. Однако когда мы имеем дело с ограниченным количеством данных, кривая нормального распределения совершенной формы никогда не получится. В период становления статистики ученые, чтобы определить, действительно ли данные распределяются в соответствии с принципом нормального распределения, поступали очень просто: строили график и смотрели, какой получается кривая. Однако каким образом можно выразить количественно точность соответствия? Пирсон изобрел метод, называемый проверкой по критерию хи-квадрат, с помощью которого можно определить верность своего предположения относительно действительного соответствия набора данных распределению. В июле 1892 г. Пирсон провел в Монте-Карло эксперименты, заключавшиеся в точном повторении действий Джаггера{180}. В одном эксперименте у Пирсона, как и у Джаггера, выпадавшие числа не соответствовали распределению, какому должны были соответствовать, выдавай рулеточное колесо действительно случайные результаты. В другом эксперименте Пирсон выяснял, сколько пятерок и шестерок выпадает за 26 306 подбрасываний двенадцати костей. И обнаружил, что распределение не такое, какое было бы в вероятностном эксперименте с идеальной костью — то есть в таком эксперименте, в котором вероятность пятерки или шестерки при одном броске была бы равна 1 из 3, или 0,3333. Однако соответствие наблюдалось, если вероятность пятерки или шестерки была 0,3377 — то есть, если кость не была идеальной. В случае с рулеткой игра могла быть сфальсифицированной, однако у костей отклонения могли быть обусловлены неточностями при изготовлении, каковые, как настаивал мой друг Моше, всегда присутствуют.

В наше время проверка по критерию хи-квадрат применяется во многих случаях. Предположим, что вместо испытаний с привлечением костей вы решите провести испытания с тремя пачками из-под хлопьев на предмет их привлекательности для потребителя. Если у потребителей нет предпочтений, можно ожидать, что около 1 из 3 выскажутся за каждую из пачек. Как мы убедились, на практике результаты редко когда распределяются с такой равномерностью. Проведя проверку по критерию хи-квадрат, вы определите, насколько вероятно, что пачка-победитель получит больше голосов в результате потребительских предпочтений, нежели простой случайности. Так же предположим, что исследователи одной фармацевтической компании проводят эксперимент: испытывают два способа лечения, используемые для предупреждения резкого отторжения трансплантанта. Они могут прибегнуть к проверке по критерию хи-квадрат, чтобы определить, существует ли статистически значимая разница между результатами. Или же предположим, что перед открытием нового автосалона руководитель финансовой службы компании по прокату автомобилей ожидает, что 25% клиентов потребуются автомобили среднего класса, 50% — малолитражки и 12,5% — автомобили средней категории и «других». Когда начинают поступать данные о продажах, проверка по критерию хи-квадрат может помочь руководителю быстро проверить: правильны ли его предположения или же новый салон нетипичен и стоит переориентироваться в соответствии со спросом.

Поделиться:
Популярные книги

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Убивать чтобы жить 9

Бор Жорж
9. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 9

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Орден Багровой бури. Книга 1

Ермоленков Алексей
1. Орден Багровой бури
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Орден Багровой бури. Книга 1

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Законы Рода. Том 10

Flow Ascold
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Имя нам Легион. Том 2

Дорничев Дмитрий
2. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 2

Возрождение Феникса. Том 2

Володин Григорий Григорьевич
2. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.92
рейтинг книги
Возрождение Феникса. Том 2

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2