Чтение онлайн

на главную - закладки

Жанры

Неандерталец. В поисках исчезнувших геномов
Шрифт:

В конце концов наши усилия начали приносить плоды, и общее настроение поднялось. До сих пор мы исследовали мягкие ткани, кожные или мышечные. Но я вспомнил, как в Упсале успешно вытягивал ДНК из хрящей мумий, то есть из ткани, похожей на костную. Если бы удалось выделить ДНК из древних костей, а не из мягких тканей, то перед нами открылось бы множество новых возможностей, так как от древних людей остаются в основном кости. В 1991 году Эрика Хагельберг и Дж. Б. Клегг из Оксфордского университета опубликовали статью с описанием процесса выделения ДНК из костей древних людей и животных [19] . Поэтому, взяв наконец под контроль инородные загрязнения, Матиас занялся освоением технологий выделения ДНК из костей древних животных. В этом случае вероятность перепутать целевую ДНК с загрязнениями значительно уменьшалась: ведь с животными мы почти не работали. Один из таких методов, описанных в литературе, предлагал протокол для экстрагирования ДНК микроорганизмов. Основан он на том, что ДНК в условиях солевого раствора высокой концентрации связывается с кремниевыми микрочастицами – в данном случае с тончайшей стеклянной пылью. Затем кремниевые частицы тщательно отмываются, чтобы избавиться от всех нежелательных компонентов, которые могут вмешаться в ПЦР. И после этого молекулы ДНК отделяют от кремниевых частиц методом понижения концентрации соли. Конечно, процесс экстрагирования ДНК оказался весьма громоздким, но он работал и приносил результаты.

19

E. Hagelberg and J.B. Clegg. Isolation and characterization of DNA from archaeological bone. Proceedings of the Royal Society B 244:1309, 45–50 (1991).

Мы с Матиасом опубликовали описание этого метода в 1993 году; в том эксперименте мы работали с костями плейстоценовой лошади и получили последовательность ее мтДНК. Так мы доказали, что можем надежно реконструировать ДНК из костей возрастом 25 тысяч лет. А это, между прочим,

была первая полученная последовательность ДНК доледниковых времен [20] . Придуманный нами тогда протокол с небольшими модификациями используют до сих пор. Все предшествующие треволнения поместились в первое, вступительное предложение статьи: мы написали, что нашу молодую область знаний “омрачают проблемы”. Но и это постепенно менялось. На самом деле Матиас и Олива, сами того не сознавая, заложили фундамент для тех открытий, что нам предстояли в следующие несколько лет. В 1994 году Матиас выделил первую последовательность ДНК из сибирского мамонта: он работал с образцами четырех особей, возрастом от 9700 до 50 тысяч лет. Мы отправили результаты в Nature, где они и были опубликованы вместе с похожими результатами Эрики Хагельберг, получившей ДНК из костей двух мамонтов [21] . И, несмотря на скромную длину реконструированных фрагментов мтДНК, все же здесь просматривались серьезные перспективы, если нуклеотидов окажется побольше. К примеру, мы заметили множество различий между последовательностями ДНК у четырех особей мамонтов. Такая информация не только способна прояснить родственные связи между мамонтами и двумя существующими видами отряда – индийским и африканским слоном, – но и позволяет проследить историю мамонтов от позднего плейстоцена до самого их вымирания около 4000 лет назад. У древней ДНК появилось наконец что отпраздновать.

20

M. H"oss and S. P"a"abo. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Research 21:16, 3913–3914 (1993).

21

M. H"oss and S. P"a"abo. Mammoth DNA sequences. Nature 370, 333 (1994); Erika Hagelberg et al. DNA from ancient mammoth bones. Nature 370, 333–334 (1994).

В то же время выяснилось, что новые технологии выделения древней ДНК приложимы в неожиданных областях биологии. В один прекрасный день у меня на пороге появился университетский зоолог Феликс Кнауэр и завел разговор о применении наших ДНК-методик к “охранной генетике”, то есть в той области знаний, где генетика служит сохранению редких и исчезающих видов. Феликсу предстояло исследовать последнюю сохранившуюся популяцию итальянских медведей, обитающих на южных альпийских склонах, но в качестве материала для исследования у него был только медвежий помет. Я предложил Феликсу и нескольким студентам попробовать наш метод “кремниевого” выделения в сочетании с ПЦР на этом специфическом материале. В результате мы сумели амплифицировать ДНК медведя и показали, что можно работать и с таким материалом. До этого, чтобы получить ДНК дикого животного, его приходилось убивать или усыплять и брать кровь у сонного, что рискованно и для животного, очевидно, неприятно. Теперь же можно изучать генетические связи итальянского медведя и его европейских сородичей без всяких сложностей. Из того же материала мы реконструировали генетическую составляющую растений, которые шли медведю в пищу, так что и о медвежьей диете кое-что смогли рассказать. Все эти результаты мы опубликовали в небольшой статье в Nature [22] . С тех пор выделение ДНК из помета стало повсеместной практикой в области генетики редких животных.

22

M. H"oss et al. Excrement analysis by PCR. Nature 359, 199 (1992).

Пока мы корпели над методиками распознавания и устранения занесенных чужеродных ДНК, в Nature и в Science одна за другой появлялись эффектные работы – их авторы будто бы добивались грандиозных успехов, рядом с которыми бледнели наши вымученные фрагменты ДНК возрастом в какие-нибудь несчастные пару десятков тысяч лет. Мода на такие работы началась году в девяностом, я тогда еще работал в Беркли. Ученые из Калифорнийского университета в Ирвайне опубликовали ДНК-последовательность ископаемой Magnolia latahensis из миоценовых отложений в Айдахо; возраст отложений составлял 17 миллионов лет [23] . Прямо ошеломительное открытие, и казалось, что теперь мы можем изучать эволюцию в невиданных масштабах в миллионы лет – так, пожалуй, и до динозавров недолго добраться! Но я, по правде сказать, был настроен скептически. Еще в 1985 году, когда работал у Томаса Линдаля, я на собственном опыте убедился, что фрагменты ДНК могут сохраниться спустя тысячи лет, но о миллионах даже речи не идет. Мы с Аланом Уилсоном произвели на основе работ Линдаля некоторую экстраполяцию, в которой проверили длительность жизни ДНК в присутствии воды и при усредненных условиях: при температурах не самых низких и не самых высоких, если среда не слишком щелочная и не слишком кислая. По нашим подсчетам выходило, что по прошествии нескольких десятков тысяч лет – а при самых благоприятных условиях, положим, и сотен тысяч – распадутся последние молекулы. Но кто знает – возможно, те отложения в Айдахо создавались при каких-то уж совсем исключительных условиях. Перед тем как отправиться в Германию, я посетил эти местонахождения. Они были сложены темными глинами, раскопки производились бульдозером. Первые же снятые слои обнажили зеленые листья магнолии, которые мгновенно почернели, оказавшись на воздухе. Я собрал много этих листьев и привез с собой в Мюнхен. В своей новой лаборатории я попытался выделить их ДНК и получил множество длинных фрагментов. Но далее, прогнав их через ПЦР, мне не удалось амплифицировать ни одного фрагмента растительной ДНК. Поскольку у меня было подозрение, что все длинные фрагменты последовательности принадлежат бактериям, а не растениям, я провел реакцию с бактериальными праймерами – и немедленно получил положительный результат. Очевидно, в глине развивались бактерии. Единственное возможное объяснение: группа из Ирвайна, работающая с генами растений и не имеющая специальной “чистой комнаты” для исследования древних ДНК, амплифицировала какую-то занесенную ДНК и решила, что это ДНК магнолии. В 1991 году мы с Аланом опубликовали наши теоретические подсчеты в статье о стабильности ДНК [24] , а в следующей статье описали мои неудачные попытки получить ДНК из ископаемых листьев из Айдахо [25] . За год до того Алан слег с тяжелой формой лейкемии, так что настроение было очень печальное. Несмотря на болезнь, он внес весомый вклад в обе статьи. Он умер в июле того же года в возрасте всего пятидесяти пяти лет.

23

E.M. Golenberg et al. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344, 656–658 (1990).

24

S. P"a"abo and A.C. Wilson. Miocene DNA sequences – a dream come true? Current Biology 1, 45–46 (1991).

25

A. Sidow et al. Bacterial DNA in Clarkia fossils. Philosophical Transactions of the Royal Society B 333, 429–433 (1991).

Я наивно полагал, что наши работы, где прямо указано на невозможность сохранения ДНК в течение миллионов лет просто с химической точки зрения, прекратят поток изысканий супердревних ДНК. Как бы не так! Поток мало того что не прекратился – листья из Айдахо были только началом! Затем настало время супердревних ДНК из янтаря. Янтарь представляет собой смолу деревьев, образовавшуюся миллионы лет назад и застывшую в виде прозрачных золотистых кусков. Больше всего янтаря находят в карьерах Доминиканской Республики и по берегам Балтийского моря. Часто в янтаре оказываются заключены насекомые, листики, даже мелкие животные – древесные лягушки, например. Такие включения сохраняют для нас мельчайшие детали организмов, живших миллионы лет назад, и многие ученые надеялись, что, может быть, их ДНК сохранились тоже. Одна из первых работ на эту тему появилась в 1992 году в Science; группа из Американского музея естественной истории предлагала нашему вниманию последовательность ДНК, которую выделили из термита возрастом 30 миллионов лет. Термит застыл в куске доминиканского янтаря [26] . Далее последовала целая серия работ от лаборатории Рауля Кано из Политехнического университета штата Калифорния в Сан-Луис-Обиспо. Одна из них исследовала ДНК долгоносика возрастом 120–135 миллионов лет из ливанского янтаря [27] ; еще одна предлагала ДНК листа из застывшей смолы доминиканского дерева возрастом 40 миллионов лет [28] . Кано после этого основал компанию, которая утверждает, что извлекла более тысячи двухсот организмов из янтаря и среди них даже девять штаммов живых дрожжей. Утверждения, конечно, диковинные, но, казалось, нельзя полностью исключать возможность сохранения ДНК в янтаре необыкновенно долго, так как организмы там защищены от влаги и кислорода, двух самых разрушительных для химии ДНК факторов. Тем не менее янтарь необязательно предохраняет ДНК от разрушительных свойств радиации; к тому же трудно объяснить, почему нам понадобились такие отчаянные усилия, чтобы амплифицировать следы ДНК из организмов

в тысячи раз моложе.

26

R. DeSalle et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257, 1933–1936 (1992).

27

R.J. Cano et al. Enzymatic amplification and nucleotide sequencing of DNA from 120–135- million-year-old weevil. Nature 363, 536–538 (1993).

28

H.N. Poinar et al. DNA from an extinct plant. Nature 363, 677 (1993).

Вопрос стал проясняться, когда в 1994 году к нам в лабораторию прибыл веселый калифорниец Хендрик Пойнар. Его отец, Джордж Пойнар, профессор в Беркли, являлся знатоком янтаря и всего, что в янтаре могло быть захоронено. Вместе с Кано Хендрик участвовал в публикациях нескольких “янтарных” последовательностей ДНК; его отец имел доступ к лучшему янтарю в мире. В Мюнхене Хендрик принялся за свои опыты в нашей “чистой комнате”, но безрезультатно. Он не мог воспроизвести то, что получил в Сан-Луис-Обиспо. Более того, если его контрольные вытяжки оказывались чистыми, то и из янтаря не удавалось выделить вообще никакой ДНК, независимо от того, проводил он опыты на растениях или насекомых. Сомнений у меня появлялось все больше и больше. И не только у меня. Томас Линдаль, который еще со времени моей стажировки у него в 1985 году живо интересовался палео-ДНК, опубликовал в Nature внушительный обзор о стабильности и распаде ДНК; часть этого обзора он посвятил древней ДНК [29] . Он указал – как и мы с Аланом ранее, – что с крайне малой вероятностью ДНК сохранится дольше нескольких сотен тысяч лет. Тем не менее вопрос о сохранности ДНК в янтаре он оставил открытым. Я же, со своей стороны, не надеялся уже и на янтарь.

29

T. Lindahl. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

Томас приспособил прекрасное слово для наидревнейших ДНК: допотопная ДНК. Нам оно так понравилось, что мы вовсю его использовали, и слово прочно вошло в наш обиход. В 1994 году произошло неминуемое. Скотт Вудворд из Университета Юты опубликовал последовательность ДНК, которую он с коллегами выделил из осколка кости в 80 миллионов лет. Кость эта, как они полагали, принадлежала какому-то динозавру [30] . Статья, естественно, появилась в одном из двух журналов, что меряются заголовками и зарабатывают часто незаслуженное уважение. В этот раз это был Science. Авторы определили множество разных мтДНК из костной ткани, некоторые из них оказались не похожими на ДНК птиц, рептилий или млекопитающих. Авторы предположили, что это специфическая для динозавров ДНК-последовательность. Для меня это прозвучало просто издевательски. У меня в лаборатории работал дотошный, даже несколько педантичный молодой специалист Ханс Цишлер. Возмущенный подобными выступлениями в нашей области, он решил объявить войну этой конкретной работе. Он провел систематизированный анализ опубликованных мтДНК-последовательностей из Юты и выяснил, что они принадлежат скорее млекопитающим или даже человеку, чем птицам или рептилиям.

30

S.R. Woodward, N.J. Weyand, and M. Bunnell. DNA sequence from Cretaceous Period bone fragments. Science 266, 1229–1232 (1994).

И все же те цепочки казались не совсем человеческими. Чтобы понять, что же это все-таки было, придется несколько углубиться в природу мтДНК. Вспомним, что митохондриальный геном представляет собой кольцевые молекулы ДНК, состоящие из 16 500 нуклеотидов, и все это находится в митохондриях, органических образованиях, расположенных снаружи клеточного ядра почти во всех животных клетках. Эти образования, или органеллы, так же как и их геномы, получились из бактерий, которые почти 2 миллиарда лет назад проникли в первичную животную клетку; животная клетка в результате получила “бесплатный” источник энергии. Со временем подсевшая в клетку бактерия переместила большинство своих ДНК в ядро клетки-носителя, и они интегрировались в ту часть генома, которая размещается в хромосомах. Даже в современном зародышевом наборе клеток при формировании яйцеклетки и клеток спермы иногда происходит разрыв митохондрий, и фрагменты их ДНК оказываются в клеточном ядре. Тогда эффективные ремонтные механизмы распознают концы разорванных цепочек и присоединяют их к другим свободным концам ДНК, так как в ядерном геноме тоже часто случаются разрывы. Таким образом, время от времени фрагменты митохондриальной ДНК встраиваются в ядерный геном, остаются там и передаются по наследству, так и не приобретая функционального значения. У нас у всех в каждом клеточном ядре найдутся сотни, если не тысячи фрагментов мтДНК, переместившихся в геном на каком-то историческом этапе. Эти фрагменты имеют различную степень схожести с нашей реальной митохондриальной мтДНК, и хотя они напоминают предковые мтДНК-последовательности, в них накопилось огромное количество мутаций, не имеющих никаких функций, так сказать, генетический мусор, встроенный в ядерную ДНК. Ханс Цишлер как раз и занимался определением таких мтДНК-включений в ядерный геном. Мы полагали, что с той самой динозавровой ДНК произошла подобная история и группа из Юты выделила именно такой фрагмент. Учитывая наш опыт с инородными и внесенными человеческими ДНК, мы считали возможным, что в Юте нашли версию человеческой мтДНК, встроенную в ядро и получившую необычные мутации. Мы решили посмотреть, не найдется ли в человеческом ядерном геноме последовательностей, похожих на опубликованные исследователями из Юты. Сложность нашего плана заключалась в том, что любая обычная вытяжка ДНК из человеческой клетки содержит смесь из ядерной и митохондриальной ДНК; таким образом, сотни или даже тысячи копий настоящей мтДНК из митохондрий большинства клеток перемешаются с сегментами псевдо-мтДНК, той, что некогда переместилась из митохондрий в ядро. И тут нам на помощь приходит биология. Как я упомянул в главе 1, мы наследуем мтДНК только от матери, через ее яйцеклетку, от отца же мтДНК мы не получаем. Происходит это потому, что сперматозоид, проникающий в ядро, не содержит митохондрий. Следовательно, чтобы получить чистую ядерную ДНК, без сопровождающей митохондриальной, нам всего-то и нужно было раздобыть и изолировать сперматозоиды.

Я поговорил со своими парнями из лаборатории, они отнеслись к нашей проблеме с пониманием и энтузиазмом, мы все договорились, и в один прекрасный день Ханс получил требуемый материал. Из спермы он выделил ДНК и прогнал через ПЦР, использовав те же праймеры, что и группа из Юты. Как и ожидалось, он секвенировал множество цепочек мтДНК, полученной, соответственно, из ядерного генома. Эти фрагменты мы внимательнейшим образом сравнили с “динозавровыми” из Юты. И действительно, нашлись два фрагмента, практически идентичных опубликованным. Это означало, что вместо ДНК динозавра лаборатория в Юте секвенировала сегменты человеческой ядерной ДНК, а точнее мтДНК, переместившуюся в ядерный человеческий геном. Так как эти сегменты оказались в ядре очень давно, за это время они набрали достаточное количество мутаций, чтобы не напоминать человеческий митохондриальный геном, но все еще походить на геном млекопитающих, птиц и рептилий. В технических комментариях в Science [31] я не удержался и съехидничал, написав, что у меня есть три возможных объяснения, как в лаборатории, где полно наших собственных ДНК, получаются цепочки, подобные опубликованным в Юте. Во-первых, в лабораторию могло по чистой случайности занести ДНК динозавра, что, по моим предположениям, маловероятно. Во-вторых, динозавры могли как-нибудь скреститься с ранними млекопитающими этак 65 миллионов лет назад. Этот вариант мне тоже пришлось отвергнуть как не слишком вероятный. По третьему сценарию – самому естественному – человеческая ДНК была внесена во время эксперимента. Science опубликовал наши комментарии и комментарии двух других лабораторий, указывающие на несоответствия в сравнительном анализе последовательностей ДНК; эти несоответствия в результате привели группу из Юты к ложным выводам, будто их мтДНК являются предковым вариантом для птиц.

31

H. Zischler et al. Detecting dinosaur DNA. Science 268, 1192–1193 (1995).

Комментарии комментариями, но, несмотря на игривый тон, горечь там тоже присутствовала: в области изучения палео-ДНК подобные работы появляются постоянно. Стремление к громким, пусть и сомнительным результатам портит исследования до сих пор. Как нередко повторяли мои студенты и аспиранты, с помощью методик ПЦР очень легко получить фантастические результаты, но очень трудно доказать, что они правильные, а уж если результаты опубликованы, еще больших трудов стоит объяснить, почему исследование ошибочно, где и как закралась ошибка, как в материал попала инородная ДНК. В том конкретном случае нам удалось все это продемонстрировать, но сколько пришлось затратить усилий! И знаний это не прибавило. По сей день, например, неясно, откуда взялась “янтарная” последовательность, опубликованная в Nature и Science. Я уверен, что, вложив некоторое количество труда и времени, можно было бы найти ее источник, но мы решили, что с нас достаточно. Как сказал один мой студент: “Хватит играть в полицейских от ПЦР”. Мы решили, что с этого момента игнорируем ошибочные с нашей точки зрения работы и сосредотачиваемся на собственных изысканиях. Мы считали, что должны сконцентрироваться на исследованиях ДНК возрастом в десятки тысяч лет, выработать методы их выделения, изучения и подтверждения корректности результатов и это будет лучшее, что мы можем сделать для нашей науки. Когда дело касается древней человеческой ДНК, именно подтверждение подлинности результата представляет наибольшую сложность, так как современная человеческая ДНК проникает абсолютно всюду. И хотя для меня это было болезненное решение, пришлось на время оставить изучение человека и направить усилия на древних животных. Пришлось вспомнить, что профессорствую я на кафедре зоологии. Так мы остановились на вопросах связи вымерших животных и их ныне живущих родственников.

Поделиться:
Популярные книги

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Королевская Академия Магии. Неестественный Отбор

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Королевская Академия Магии. Неестественный Отбор

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода