Чтение онлайн

на главную - закладки

Жанры

Необычные размышления о…
Шрифт:

В результате такие электроны перемещаются в пространстве в направлении спина, передавшего импульс, фотона. А их спины ориентируются по спину такого фотона. Таким образом, между электронами, фотонами и новыми электронами, фотонами, осуществляется эстафетная передача энергии, импульса, момента движения. Что, в сущности, и является электрическим током.

Какова частота фотонов, участников электрического тока? Надо измерять. Скорее всего, частота фотонов пребывает в инфракрасном, микроволновом, но не в световом диапазоне. Иначе, мы бы видели электрический ток. При такой, нашей интерпретации

электрического тока, омическое сопротивление обусловлено изменениями в движении и электронов, и фотонов. Например, при тепловых колебаниях кристаллической решетки проводника и электроны, и фотоны, сталкиваясь с атомами кристаллической решетки, теряют (изменяют) энергию, импульс, спин (по направлению), что ведет к нарушению порядка в перемещениях электронов и фотонов (к омическому сопротивлению).

Вместе с тем, если интенсивность фотонов в проводнике слишком велика, то это приводит к изменениям на атомном уровне кристаллической решетки. Фотоны (и электроны) электрического тока возбуждают атомы кристаллической решетки. Что приводит к дополнительному появлению в проводнике фотонов от возбужденных атомов. Частота таких фотонов соответствует различным частотным диапазонам (световым, рентгеновским, гамма).

Например, при коротких замыканиях и в молниях, мы наблюдаем фотоны в видимом частотном диапазоне излучений, а в молниях – в рентгеновском и гамма – диапазоне. Во время молниевых разрядов обнаружили и рентгеновское и гамма-излучения.

Объяснить их происхождение можно следующим образом. Накопленные в атмосфере электроны, порождают интенсивные потоки фотонов, которые, вместе с электронами, приводят в движение атомы атмосферных частиц, происходят их соударения, что является причиной возникновения плазменных каналов в атмосфере, по которым перемещаются и электроны и протоны. В результате таких соударений, кроме световых фотонов, появляется рентгеновское излучение и гамма излучения.

13.1. О явлениях электричества и магнетизма

Принято считать, что под воздействием магнитного поля, проводники с током могут притягиваться или отталкиваться. Что такое “под воздействием магнитного поля” нам не совсем понятно. То ли, это баба Яга (магнитное поле), сидящая в одном проводнике с током, своей невидимой рукой хватает другой проводник с током и тянет (или отталкивает) его к себе, то ли это что-то другое. Не знаем. Но участие нечистой силы в таком притягивании, как-то не хочется признавать. А потому механизм притягивания (или отталкивания) проводников с током, будем рассматривать через призму взаимодействия электронов и фотонов, обладающих энергией, импульсом и моментом количества движения.

Пусть, для определенности, в двух параллельных проводниках, электрические токи текут в одну и ту же сторону. Практика показывает, что такие проводники притягиваются. Правильнее сказать, перемещаются навстречу друг к другу. В 1820 году Ампер установил закон взаимодействия токов. Согласно такому закону, сила взаимодействия, приходящая на единицу длины каждого из параллельных проводников, пропорциональна произведению величин токов в таких проводниках, и обратно пропорциональна расстоянию

между проводниками.

О нечистой силе, которая, якобы, обусловливает такое взаимодействие, сказано выше. Как нам представляется такое взаимодействие? Мы знаем, что электрический ток – это направленное движение и электронов, и фотонов, которые в основном перемещаются вдоль проводника. Вместе с тем, часть фотонов вылетает из проводника и перемещается в сторону параллельного проводника с током и даже проникает в параллельный проводник с током, и такие фотоны вступают во взаимодействие с электронами параллельного проводника.

К чему приводит такое взаимодействие?

Не будем забывать, что и фотоны, и электроны обладают спином, то есть вращаются в пространстве и их можно рассматривать в качестве специфических гироскопов. В результате, после столкновений фотонов из первого проводника, с электронами из второго проводника, возникающий специфический гироскопический эффект приводит к тому, что электроны внутри второго проводника перемещаются в пространстве таким образом, что, подталкиваемый такими электронами второй проводник, в целом перемещается в сторону первого проводника.

Точно также, аналогичные процессы, происходящие во втором проводнике, приводят к тому, что первый проводник с током перемещается в сторону второго проводника. Возникает видимость взаимного притяжения проводников.

Не сложно понять, что, если в двух параллельно размещенных проводниках, электрические токи текут в противоположных направлениях, то такие проводники будут перемещаться в противоположные стороны друг от друга (создается видимость отталкивания). Заметим, что при такой интерпретации электрических токов, мы не нуждаемся в понятии “поле”. И для объяснения явлений “притягивания” (“отталкивания”) проводников, нечистая сила (баба Яга) нам тоже не нужна.

Вместе с тем, очень хотелось бы знать все о полете фотона и электрона в пространстве. Например, как ориентирован спин фотона к вектору скорости фотона, когда фотон перемещается в вакууме? Или, когда фотон перемещается в проводнике с током. Или в стекле. Что происходит с частотой фотона, когда фотон в проводнике с током сталкивается с кристаллической решеткой проводника? Как, в этом случае, проявляется эффект Комптона? Как ориентирован спин электрона по отношению к вектору скорости перемещения электрона в пространстве? В вакууме, в проводнике, в иных средах? Знание ответов на такие вопросы помогло бы подправить закон Кулона, а также закон взаимодействия проводников с токами (закон Ампера).

Подправить – это значит вместо зарядов в числителе закона Кулона, поставить параметры, характеризующие фотон. Например, частоту фотонов, их интенсивность, скорость перемещения в соответствующей среде. Ведь, именно фотоны, в конечном счете, являются переносчиками силового воздействия (энергии, импульса, момента количества движения). Подправить – это значит, в законе Ампера (о взаимодействии проводников с токами), вместо токов, в числителе поставить расшифровку токов. То есть, поставить все те же характеристики фотонов, которые ответственны за силовой, эстафетный механизм распространения токов в проводнике.

Поделиться:
Популярные книги

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Страж Кодекса. Книга VI

Романов Илья Николаевич
6. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VI

Поющие в терновнике

Маккалоу Колин
Любовные романы:
современные любовные романы
9.56
рейтинг книги
Поющие в терновнике

Темный Лекарь 6

Токсик Саша
6. Темный Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 6

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь