Чтение онлайн

на главную - закладки

Жанры

Необыкновенная жизнь обыкновенной капли
Шрифт:

Наш дважды повторенный расчет дает совсем дру­гую цифру. Надо же было Раисе ошибиться так хитро! Непостижимо: ошибка по заказу! (Теперь я никогда не говорю технику наперед предполагаемый результат). Психолог, вероятно, объяснит такое явление скрытой ра­ботой подсознания, сознанию это просто не под силу. Расчетчик обычно не размышляет над результатом, он ему безразличен. Да и не так просто в ходе неокончен­ного расчета «подтасовать» итог. Из психологии извест­но — наши ошибки и обмолвки совсем не случайны. Однажды мы все ожидали премии за окончание сроч­ных работ, и машинистка в научном отчете напечатала: «Экспериментальные точки хорошо ложатся на пре­мию», вместо «на прямую» — неплохо сострила.

И вот следующий долгожданный день наступил. Сначала я повторил один к одному прежний экспери­мент. Эффект раздвоения капли за ночь не изменил своей природы. Потом я слегка уменьшил скорость воз­душного

потока — отпечаток снова стал одиночным. Так я нащупал границу: чуть уменьшишь скорость — один отпечаток, увеличишь — два. «Прочь, сомнения и трево­ги!» Я случайно наткнулся на новое явление — дробле­ние капли в потоке воздуха при определенной критиче­ской скорости.

Я круто изменил направление исследований. К чер­ту нудные работы с поправочным коэффициентом от­печатка! (Благо, они почти закончены.) Распад капли в потоке гораздо принципиальней и интересней. Теперь нужны убедительные подтверждения. Ведь мы все-таки не видели своими глазами, как она дробится. Доказа­тельства требуются четкие и наглядные, тогда можно избежать неприятных разговоров с начальством о новой , внеплановой теме — победителей не судят. Я начал с химии: в лаборатории реактивов изготовили стопку фильтровальной бумаги со специальной пропиткой. В жидкость — теперь мы перешли на воду — была до­бавлена специальная примесь красителя, практически не менявшая физических констант воды. Капля, попав­шая на экран, моментально впитывалась — отскакива­ние исключалось. На бумаге возникало «глазастое» яр­кое пятно, оно хорошо было видно невооруженным гла­зом и для очень мелких капель.

Таким «победным флагом» можно было помахать перед глазами членов научно-технического совета. Но все-таки хотелось увидеть, зафиксировать сам процесс дробления. Конечно, здесь годился прибор, который тогда назывался «лупа времени» или попросту «скорост­ное кино». Но его надо было искать в другом институте. К тому же прибор нуждался в тонкой наводке и фоку­сировке. А куда наводить эту оптическую «тяжелую артиллерию», если точка дробления неизвестна и навер­няка «гуляет» в пространстве и времени? Совместно с оптиками мы придумали более простой метод. Летящая капля фотографировалась в затемненной комнате при боковом освещении (рис. 16). Объектив фотоаппарата оставался открытым; свет, отраженный поверхностью ртутных капель (или преломленный каплями воды), по­падал в объектив и прочерчивал на пленке всю траек­торию, ясно обозначая место раздвоения. Труд, вложен­ный в методику, всегда окупается сторицей. Опыты показали четкий результат. Для каждой жидкости име­ется своя критическая скорость, она тем больше, чем мельче капля; критическая скорость растет с ростом по­верхностного натяжения жидкости и с уменьшением плотности газа.

Эксперименты прошли быстро, на одном дыхании. Были получены новые интересные факты, теперь пред­стояло осмыслить их, свести воедино многочисленные столбцы разрозненных цифр в протоколах опытов. Каков закон дробления? Я попробовал рассуждать просто. . При полете капли противоборствуют две силы: активная — аэродинамическая — стремится деформировать каплю; стабилизирующая, обусловленная поверхност­ным натяжением, сопротивляется — эластичная жидкая поверхность изгибается, но не рвется.

Рис. 16. Схема экспериментов по дроблению капель в газовом пото­ке: 1 — выходное отверстие воздуходувки, 2 — капельница, 3 — осве­титель, 4 — точка раздвоения капли, 5 — фотоаппарат, 6 — улавли­вающий экран

О чем говорит факт существования критической ско­рости? О некой критической стадии деформации. Если отклонение от шара невелико, форма (как и сфериче­ская) еще устойчива относительно малых возмущений, деформация обратима; потом на излете капля стянется в шарик. Но если дело зашло далеко, достигнут крити­ческий предел — возврата нет, малые возмущения (как и на струе) довершат дело, развалят каплю. Дойдет до критической деформации или нет, это вопрос «кто — кого» в противоборстве сил.

Движущаяся капля всегда немного вибрирует. Вда­ли от критической фазы эти малые колебания для нее безопасны. На критической грани капля «дышит тяже­ло», как бы

раздумывая — развалиться или нет, и где- то на «выходе» перетягивается восьмеркой пополам.

Теперь от качественных соображений предстояло переходить к числам, памятуя, что качество — непознан­ное количество. Легко сказать: к числам. От них пестрит в глазах.

Таб.1

В каждом опыте (а он «схватка в воздухе») капля имеет свою «визитную», или, может, лучше — «летную» карточку. Там о ней все записано: диаметр капли, поверхностное натяжение жидкости, скорость и плотность обдувающего газа. Целых четыре числа — умножьте на сотни опытов... необозримое поле. А что, если «роковой вопрос» жизни капли выразить на коли­чественном языке соотношения противоборствующих сил: активной — давления потока и демпфирующей — давления поверхностного натяжения (они как раз за­висят от четырех наших чисел). Возьмем давление газа Pr в лобовой точке капли, где оно наибольшее и равно скоростному напору u2/2 (струйка тока газа полностью тормозится). Давление поверхностного натяжения опре­делим по известной формуле Лапласа для жидкого шара Рж = 4/а. Величина отношения давлений (с точностью до постоянных коэффициентов) дает комплекс, называе­мый критерием, или числом Вебера We:

 Рг/Рж We = u2а/.

Теперь четыре числа заменялись одним. Путь эконо­мии информации обычно плодотворен. Он и привел меня к искомому закону. Стоило разложить «летные» карточки моих капель по порядку новых номеров, как обнаружилась интересная закономерность.

Пусть взяты самые разные четверки исходных чисел для совсем непохожих жидкостей: воды, ртути, спирта, керосина. Если их новый «паспортный номер» одинаков, одинакова и судьба капель. Когда число Вебера меньше десяти, капля остается целой; если оно равно десяти, происходит раздвоение; при числе чуть больше деся­ти (11—12 — деликатная область, верхнюю границу най­ти трудно) — распад на несколько крупных (три, четы­ре, пять...) примерно равных частей. Дальше, если число достигает 14, переход в мир иной, от порядка к хао­су — режим распыливания: капли, возникшие в резуль­тате распада, на порядок меньше исходной капли и со­ставляют статистический спектр; с ростом числа Вебера за 14 (закритическая область) капельные осколки все измельчаются. Различные формы деформации и распа­да капли в зависимости от числа Вебера приведены в таблице (Таб.1).

Теперь новое число приобрело ясный физический смысл критерия деформации и дробления летящей кап­ли. Критической фазе отвечает его минимальное дробя­щее значение (рис. 17).

Все добытые в опыте цифры, как льдинки мальчика Кая в андерсеновской «Снежной королеве», сами сло­жились в нужной комбинации: Кай прочел слово «вечность», а мы — слово «истина». Это слово нас вдохновляло, хотя речь шла всего лишь об одной маленькой научной истине из мира таких же маленьких капель.

Рис. 17. График дробления капель в потоке газа:: 1 — режим критик ческой деформации, 2 —режим распыливания

 ***

Найденная формула безотказно действовала для всех не очень вязких жидкостей и годилась для разных видов топлива реактивных двигателей. В случае вязких жидкостей дело усложнялось; например, для касторово­го масла критерий раздвоения оказался много больше. Это и понятно: здесь демпфирующие силы, кроме по­верхностного натяжения, включают и силы вязкости жидкости, которые для других жидкостей можно было не учитывать.

Поделиться:
Популярные книги

Вкус ледяного поцелуя

Полякова Татьяна Викторовна
2. Ольга Рязанцева
Детективы:
криминальные детективы
9.08
рейтинг книги
Вкус ледяного поцелуя

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Лейтенант космического флота

Борчанинов Геннадий
1. Звезды на погонах
Фантастика:
боевая фантастика
космическая фантастика
космоопера
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Лейтенант космического флота

Гарем на шагоходе. Том 5

Гремлинов Гриша
5. Волк и его волчицы
Фантастика:
боевая фантастика
фэнтези
5.00
рейтинг книги
Гарем на шагоходе. Том 5

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III