Чтение онлайн

на главную - закладки

Жанры

Нереальная реальность. Путешествие по квантовой петле
Шрифт:

Величайший физик второй половины XX века Ричард Фейнман писал в начале своего великолепного вводного курса лекций по физике:

Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это – атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов – маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе, как вы

убедитесь, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения [15] .

15

Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике: В 9 т. Т. 1. Современная наука о природе. Законы механики. – М.: Наука, 1965. – С. 23. – Примеч. пер.

Не располагая знаниями современной физики, Демокрит тем не менее пришел к мысли, что всё состоит из неделимых частиц. Как ему это удалось?

Он использовал аргументы, основанные на наблюдении; например, он совершенно верно предполагал, что износ колеса и высыхание белья на веревке могут происходить из-за медленного улетучивания частиц соответственно дерева и воды. Кроме того, у него были аргументы философского плана. Сконцентрируемся на них, поскольку их сила простирается вплоть до квантовой гравитации.

Демокрит заметил, что вещество не может быть непрерывным целым, поскольку такое допущение приводит к противоречию. Мы знаем о рассуждениях Демокрита, поскольку их описывает Аристотель [16] . Представим, говорит Демокрит, что вещество бесконечно делимо, то есть его можно разделять на части до бесконечности. Что останется в результате?

Могут ли это быть крошечные частицы, имеющие протяженность? Нет, поскольку в этом случае такие частицы материи не были бы делимыми до бесконечности. Поэтому остаются только точки без протяженности. Но теперь попробуем составить кусок материи из таких точек: сложив вместе две точки без протяженности, вы не получите протяженную вещь, так же как и из трех точек и даже из четырех. На самом деле, сколько бы точек вы ни сложили вместе, вы никогда не получите протяженности, поскольку у точек ее нет. Поэтому материю нельзя представлять состоящей из точек, лишенных протяженности, потому что независимо от того, сколько точек мы объединим, мы никогда не сможем получить нечто, имеющее пространственную протяженность. Единственная возможность, заключает Демокрит, состоит в том, что любая часть вещества состоит из конечного числа дискретных неделимых порций, каждая из которых имеет конечные размеры, – атомов.

16

Аристотель. О возникновении и уничтожении // Собр. соч.: В 4 т. Т. 3. – М., 1981. – С. 379. – Примеч. пер.

Это весьма тонкое рассуждение появилось еще до Демокрита. Его родина – область Чиленто в Южной Италии, где сейчас находится город Велия, а в V веке до нашей эры была процветающая греческая колония Элея. Здесь жил Парменид, философ, который буквально – в чем-то даже излишне – воспринял рационализм Милета и возникшую там идею о том, что разум способен показать нам, насколько вещи отличаются от того, чем они кажутся. Парменид пытался искать истину посредством одного только чистого разума, и этот путь привел его к утверждению, что всё видимое иллюзорно; это способствовало открытию нового направления мысли, которое со временем все более склонялось к метафизике, отдаляясь от того, что впоследствии стало естественными науками. Ученик Парменида Зенон, также родом из Элеи, стал автором изощренных аргументов в поддержку этого фундаменталистского рационализма, категорически отвергающего достоверность

внешних проявлений. Среди этих рассуждений был набор парадоксов, известных как апории Зенона; они направлены на то, чтобы показать иллюзорность всего видимого, доказывая, что обыденное представление о движении абсурдно [17] .

17

Недавно вышедшее хорошее изложение парадоксов Зенона с разъяснением их философского и математического значения: Vincenzo Fano. I paradossi di Zenone (Апории Зенона). – Rome, Carocci, 2012.

Самый знаменитый из парадоксов Зенона излагается в виде короткой басни. Черепаха вызвала Ахиллеса на состязание в беге с условием десятиметровой форы для себя. Сможет ли Ахиллес догнать черепаху? Зенон доказывает, что, согласно строгой логике, это ему никогда не удастся. Ведь прежде чем догнать черепаху, Ахиллес должен будет преодолеть 10 метров, и чтобы сделать это, ему понадобится некоторое время. За это время черепаха продвинется на несколько сантиметров. Чтобы преодолеть эти сантиметры, Ахиллесу потребуется еще немного времени, за которое черепаха продвинется еще чуть дальше, и так до бесконечности. Ахиллесу, таким образом, потребуется бесконечное число подобных шагов, чтобы догнать черепаху, а бесконечное число шагов, рассуждает Зенон, это бесконечное количество времени. Следовательно, согласно строгой логике, Ахиллесу потребуется бесконечное количество времени, чтобы догнать черепаху; иначе говоря, он никогда ее не догонит. Но поскольку мы видим, что проворный Ахиллес догоняет и обгоняет столько черепах, сколько захочет, мы приходим к заключению, что видимое нами иррационально и потому иллюзорно.

Честно говоря, всё это звучит не слишком убедительно. Но где же допущена ошибка? Один из возможных ответов состоит в том, что Зенон ошибался, полагая, что сложение бесконечного числа вещей приводит к бесконечной вещи. Представьте, что вы взяли кусок струны, разрезали его пополам, затем еще раз пополам и так до бесконечности. В конце вы получите бесконечное число крошечных кусочков струны; их сумма, однако, будет конечной, поскольку из них можно сложить лишь кусок струны исходного размера. Получается, что из бесконечного числа струн может получиться конечная струна; бесконечное число всё более коротких отрезков времени может складываться в конечное время, и герою, хотя и придется преодолеть бесконечное число постоянно уменьшающихся дистанций, удастся сделать это за конечное время и в итоге догнать черепаху.

Кажется, парадокс разрешен. Решение состоит в идее континуума: могут существовать сколь угодно малые отрезки времени, а их бесконечное число может складываться в конечный отрезок времени. Аристотель первым интуитивно понял эту возможность, которая в дальнейшем исследовалась древними и современными математиками [18]

18

Математики говорят о сходящихся бесконечных суммах, или рядах. Например, бесконечная сумма 1/2 + 1/4 + 1/8 + 1/16 +… сходится к 1. Во времена Зенона не было представления о бесконечных сходящихся рядах. Их открыл Архимед несколькими столетиями позже и использовал для вычисления площадей. Ими активно пользовался Ньютон, но полной ясности с этими математическими объектами не было вплоть до работ Больцано и Вейерштрасса, выполненных в XIX столетии. Аристотель, однако, уже понимал, что это возможный способ ответа Зенону; введенное Аристотелем различие между актуальной бесконечностью и потенциальной бесконечностью уже содержит в себе ключевую идею: различие между отсутствием предела делимости и возможностью иметь нечто уже разделенным на бесконечное число частей.

Конец ознакомительного фрагмента.

Поделиться:
Популярные книги

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Точка Бифуркации

Смит Дейлор
1. ТБ
Фантастика:
боевая фантастика
7.33
рейтинг книги
Точка Бифуркации

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Энфис 5

Кронос Александр
5. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 5