Чтение онлайн

на главную - закладки

Жанры

Нейросети практика
Шрифт:

Векторное представление слов (word embeddings):

Векторное представление слов, также известное как word embeddings, является методом преобразования слов в числовые векторы. Это позволяет представить слова в виде чисел, которые могут быть использованы в алгоритмах машинного обучения, включая нейронные сети.

Преимущество векторного представления слов заключается в том, что оно сохраняет семантическую информацию о словах. Слова, имеющие близкое значение или используемые в схожих контекстах, будут иметь близкие числовые векторы.

Это позволяет модели улавливать смысловые связи между словами и обобщать информацию на основе контекста.

Существует несколько методов создания векторных представлений слов, и два из наиболее популярных примера – это Word2Vec и GloVe.

Word2Vec: Word2Vec является алгоритмом, который обучает векторные представления слов на основе их соседства в больших текстовых корпусах. Алгоритм стремится сделать векторы слов, близкие друг к другу, если слова часто появляются в одних и тех же контекстах. Word2Vec предоставляет две архитектуры: Continuous Bag of Words (CBOW) и Skip-gram.

GloVe: GloVe (Global Vectors for Word Representation) также является методом создания векторных представлений слов. Он использует статистику совместной встречаемости слов в корпусе текста для определения семантических связей между словами. Главная идея GloVe заключается в том, чтобы сопоставить векторное представление каждого слова с его вероятностью появления в контексте других слов.

Оба метода, Word2Vec и GloVe, позволяют получить плотные векторные представления слов, в которых семантически похожие слова имеют близкие числовые значения. Эти векторные представления могут быть использованы в моделях глубокого обучения для анализа текста, классификации, генерации текста и других задач, где требуется работа с текстовыми данными.

Допустим, у нас есть набор предложений, и мы хотим создать векторные представления слов с использованием Word2Vec. Рассмотрим следующий пример:

Предложения:

1. "Я люблю готовить вкусную пиццу."

2. "Она предпочитает читать книги вечером."

Шаги для создания векторных представлений слов с помощью Word2Vec:

– Токенизация: Разделим каждое предложение на отдельные слова.

Результат:

Предложение 1: ["Я", "люблю", "готовить", "вкусную", "пиццу"]

Предложение 2: ["Она", "предпочитает", "читать", "книги", "вечером"]

– Обучение модели Word2Vec: Используем библиотеку Gensim для обучения модели Word2Vec на нашем наборе данных. Установим размерность векторов равной 100 и окно контекста равное 5.

Код на Python:

```python

from gensim.models import Word2Vec

sentences = [["Я", "люблю", "готовить", "вкусную", "пиццу"],

["Она", "предпочитает", "читать", "книги", "вечером"]]

model = Word2Vec(sentences, size=100, window=5)

```

– Получение векторных представлений слов: Теперь мы можем получить векторное представление каждого слова из обученной модели.

Код на Python:

```python

vector_pizza = model.wv["пиццу"]

vector_books = model.wv["книги"]

print("Векторное представление слова 'пиццу':")

print(vector_pizza)

print("\nВекторное представление

слова 'книги':")

print(vector_books)

```

Вывод:

```

Векторное представление слова 'пиццу':

[0.12345678, -0.23456789, …] (вектор размерностью 100)

Векторное представление слова 'книги':

[0.98765432, -0.87654321, …] (вектор размерностью 100)

```

В результате мы получаем векторные представления слов "пиццу" и "книги", которые содержат числовые значения. Эти векторы представляют семантическую информацию о словах и могут быть использованы в различных задачах анализа текста или обработки естественного языка.

Рекуррентные нейронные сети (RNN) и сверточные нейронные сети (CNN): Рекуррентные нейронные сети (RNN) и сверточные нейронные сети (CNN) являются популярными моделями глубокого обучения, которые широко применяются для обработки текстовых данных и анализа последовательностей.

Рекуррентные нейронные сети (RNN):

– Описание: RNN являются моделями, способными работать с последовательными данными, где каждый элемент последовательности имеет взаимосвязь с предыдущими элементами. Они обладают "памятью", которая позволяет учитывать контекст и зависимости в последовательности.

– Применение в обработке текста: RNN широко используются для задач обработки текста, таких как машинный перевод, генерация текста, анализ тональности и распознавание именованных сущностей. Они способны улавливать зависимости между словами в предложении и моделировать последовательный контекст.

Сверточные нейронные сети (CNN):

– Описание: CNN являются моделями, специализирующимися на обработке данных с локальными зависимостями, такими как изображения и тексты. Они используют сверточные слои для обнаружения локальных паттернов и признаков в данных.

– Применение в обработке текста: CNN также нашли применение в обработке текстовых данных, особенно в задачах классификации текста и анализа настроений. Они могут извлекать признаки из текстовых окон различной длины, что позволяет учиться на локальных контекстах и обнаруживать важные шаблоны в тексте.

Оба типа нейронных сетей имеют свои преимущества и применяются в различных задачах обработки текста. Выбор между RNN и CNN зависит от специфики задачи, доступных данных и требований модели. В некоторых случаях также используются комбинации RNN и CNN, чтобы объединить преимущества обоих подходов.

2. Изображения:

– Предобработка изображений: Масштабирование, обрезка, изменение размера или нормализация.

Предобработка изображений в задачах глубокого обучения играет важную роль в обеспечении правильного представления данных и улучшении производительности моделей. Вот некоторые методы предобработки изображений:

Масштабирование (Scaling): Изображения могут иметь разные размеры и разрешения. Чтобы обеспечить одинаковые размеры для всех изображений, их можно масштабировать до заданного размера. Это может быть полезно для обеспечения согласованности входных данных для модели.

Поделиться:
Популярные книги

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Печать пожирателя 2

Соломенный Илья
2. Пожиратель
Фантастика:
городское фэнтези
попаданцы
аниме
сказочная фантастика
5.00
рейтинг книги
Печать пожирателя 2

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Имя нам Легион. Том 3

Дорничев Дмитрий
3. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 3

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Сильная. Независимая. Моя

Бигси Анна
5. Учителя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сильная. Независимая. Моя

Фею не драконить!

Завойчинская Милена
2. Феями не рождаются
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Фею не драконить!

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II