НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.
Шрифт:
На Рис. 16 IV изображена другая схема подключения. Две первичные обмотки P1 и Р2 подключены к контуру L: одна через конденсатор малой емкости С, а другая напрямую. Первичные обмотки имеют вторичные Sj и S2, которые подключены последовательно к цепям возбуждения А2 и В2, а также к двигателю М3. Конденсатор С, как и в предыдущих случаях, служит для обеспечения разницы в фазах у токов, проходящих через цепи двигателя. Так как подобные фазовые двигатели известны достаточно широко, то на иллюстрации они изображены схематически. Поскольку не было отмечено каких-либо трудностей в работе электродвигателей, функционирующих таким, или подобным образом, и, несмотря на то, что на сегодняшний день такие эксперименты представляют только научный интерес, возможно, что в самом недалеком будущем мы увидим их в практическом применении.
Полагаю, что были бы уместны некоторые замечания в отношении всех устройств, функционирующих при помощи только одного провода. Совершенно очевидно, что в устройствах, работающих
Использование заземление при слабом токе, или при токе низкой частоты не рекомендуется потому, что эти факторы вызывают химические реакции разрушающего действия на самом заземлении, а также негативно влияют на работу электрических цепей. Однако при токе высокой частоты, эти негативные проявления практически отсутствуют. Даже если рассматривать заземление как ненужный элемент в ситуации, когда имеется электродвижущая сила большой мощности, в скором времени будут созданы условия, при которых передача электрического тока чрез открытое соединение окажется более экономичной, нежели через закрытое. Человеку, мало знакомому с результатами подобных экспериментов может показаться, что промышленное применение такого способа передачи электрической энергии, то есть с использованием только одного провода — дело далекого будущего, однако, оно не покажется таковым для тех, кто потратил некоторое время на изучение природы этих явлений. В самом деле, я не вижу причин, которые могли бы помешать осуществлению такого плана. Также было бы неверным полагать, что для претворения в жизнь такого плана, обязательно требуется очень высокая частота. Напряжения в 30 000 вольт вполне достаточно для того, чтобы передавать электрический ток низкой частоты по одному проводу. Результаты экспериментов, проведенных мной, позволяют делать такие заключения.
Как показали лабораторные опыты, можно легко управлять током очень высокой частоты способом, представленным на Рис. 17. Там показаны две обмотки: P Pj, каждая из которых одним своим выходом соединена с контуром L, а другим с конденсаторными пластинами С и С, соответственно. Рядом с ними расположены другие конденсаторные пластины Сj и С/. Первая из них соединена с контуром L, а вторая с большой изолированной пластиной P2 Поверх первичных обмоток намотаны вторичные S и Sj, изготовленные из толстой проволоки, и которые подсоединены к устройствам d и l соответственно. При изменении расстояния между конденсаторными пластинами С и С j, а также С и С/, изменяется сила тока, проходящего по вторичным обмоткам S и S. При этом наблюдается необычная особенность — очень высокая чувствительность: даже очень небольшое изменение расстояния между пластинами вызывает весьма значительное изменение силы тока. А в условиях резонанса, чувствительность и вовсе огромна, то есть в условиях, когда частота тока равна частоте в первичной обмотке, отсутствует пластина на свободном конце, а вторичная обмотка замкнута. Например: я создал такие условия, когда при подходе человека к катушке, довольно значительно менялась яркость лампы, подключенной ко вторичной обмотке. Разумеется, такие эксперименты сегодня вызывают только научный интерес, однако в скором времени они могут приобрести и практическое значение.
Использование тока очень высокой частоты в электродвигателях невозможно, по причине необходимости использования железных сердечников. Но можно использовать резкие разряды тока низкой частоты, и таким образом получить определенные преимущества, присущие токам высокой частоты, при этом без того, чтобы железный сердечник стал совсем неспособен следовать изменениям, и вызывая тем очень большой потери энергии на сердечнике. Мой опыт показал, что вполне возможно приводить в движение двигатели переменного тока при помощи таких пробивных низкочастотных разрядов конденсаторов. Двигатели определенного класса, с которыми мне довелось работать несколько лет назад, у которых были замкнутые вторичные цепи, при прохождении разряда через катушки возбуждения, вращались весьма энергично, Одна из причин, почему эти двигатели работали столь хорошо, состоит в том, что разность фаз между токами первичной и вторичной обмоток составляла 90 градусов, что в целом не обеспечивало равномерных взлетов и падений тока низкой частоты. Возможно, будет небезынтересно продемонстрировать эксперимент с одним двигателем такого класса, поскольку бытует мнение, что пробивные разряды не подходят для этих целей. Такой электродвигатель изображен на Рис. 18. Он включает в себя довольно большой железный сердечник i с пазами в верхней части, в которые впрессованы медные шайбы С С. В непосредственной близости от сердечника находится свободно передвигаемый диск D. Сердечник оснащен первичной катушкой возбуждения С1, выходы a и b которой подключены к клеммам вторичной обмотки S обычного трансформатора. Первичная обмотка Р трансформатора подключена к распределительной сети переменного тока, или к генератору G тока низкой, или средней частоты. Клеммы вторичной обмотки S подключены к конденсатору С, разряды которого проходят через воздушный зазор d d, и который может быть подключен последовательно, или параллельно к катушке С]. Если все параметры соблюдены правильно, то диск D вращается с заметным усилием, а железный сердечник i не подвергается ощутимому нагреву.
А при использовании переменного тока, вырабатываемым высокочастотным альтернатором, наоборот, металлический сердечник быстро нагревается, а диск вращается со значительно меньшим усилием. Для того, чтобы провести эксперимент должным образом, следует в первую очередь удостовериться, что диск D находится в состоянии покоя, когда в воздушном зазоре d d нет разрядов. Рекомендуется
ЯВЛЕНИЕ ИМПЕДАНСА
Среди множества феноменов, наблюдаемых у электрического тока, возможно, наиболее интересным является импеданс проводников к токам с очень высокой частотой колебаний. В своем первом выступлении перед аудиторией Американского Института Инженеров- Электриков я описал несколько поразительных наблюдений. В частности я продемонстрировал, что при прохождении такого тока, или неожиданных разрядов через толстый металлический брусок, на бруске могут быть точки, отстоящие друг от друга всего на несколько дюймов, разность потенциалов между которыми оказывается достаточной для того, чтобы поддерживать яркое свечение обычной лампы накаливания. Я также объяснил необычное поведение разреженного газа, окружающего проводник, возникающее вследствие таких неожиданных всплесков тока. С тех пор эти явления были изучены более тщательно, а пара новых экспериментов оказались настолько интересны, что заслуживают того, чтобы на них подробно остановились.
На Рис. 19а, изображена схема, где В и Вj очень толстые медные стержни, соответствен- но соединенные своими нижними концами с пластинами С и Сj конденсатора. Противополож- ные пластины конденсатора подключены к клеммам вторичной обмотки высоковольтного трансформатора. На первичную обмотку трансформатора подается переменный ток от обычной низкочастотной динамо-машины, либо от распределительной сети. Как обычно, конденсатор разряжается через воздушный зазор d d. Оказалось, что при наличии частых колебаний, до- вольно легко можно проделать следующий, весьма любопытный эксперимент. Стержни В и В j соединены по верху лампой низкого напряжения l3, чуть ниже, с помощью крепежей С С раз- мещена 50-вольтовая лампа 12, еще ниже расположена другая 100-вольтовая лампа I1; и нако- нец, на строго определенном расстоянии от последней лампы — вакуумная трубка Т. Осторожно перемещая эти устройства по стержням, вполне возможно добиться того, чтобы каждое из них светилось в соответствии с определенной ей мощностью, несмотря на то, что все они соединены параллельно между двумя толстыми медными стержнями и требуют для работы совершенно различное напряжение. Разумеется, этот эксперимент требует определенного вре-. мени на подготовку, но его очень легко осуществить.
На Рис. 19b и 19с представлены схемы двух других экспериментов, которые в отличие от предыдущего, не требуют точной регулировки. На Рис. 19b две лампы, 100-вольтовая l1 и 50- вольтовая /2, расположены определенны образом: 100-вольтовая лампа находится ниже 130- вольтовой. Когда между точками d d проскакивает дуга и скачкообразные разряды проходят через стержни В и Вj, то, как правило, 50-вольтовая лампа излучает яркий свет, по крайней мере такого результата можно добиться без особого труда, тогда как 100-вольтовая лампа едва светится, или вообще остается темной, Рис. 19b Но если стержни В и В1 соединить толстым поперечным стержнем В2, то легко можно добиться того, чтобы 100-вольтовая лампа работала на полную мощность, а 50-вольтовая оставалась темной, Рис. 19с. Как я уже отмечал ранее, данные результаты не следует объяснять только частотой, это в большей мере относится к периоду времени, в течение которого и происходят изменения, который может быть очень большим, особенно при низкой частоте тока. Имеется еще множество различных результатов, которые представляют не меньший интерес, особенно для тех, кто в своей практике использует только ток слабой силы. Возможно, здесь они найдут ключ к разгадке тайны природы электрического тока.
В предыдущих экспериментах я уже имел возможность продемонстрировать некоторые явления, и, возможно, было бы целесообразно изучить их более детально. Однако для того, чтобы придать данному исследованию более законченный вид, я думаю, что необходимо в первую очередь сделать несколько замечании в отношении электрического резонанса, который наблюдался при проведении всех этих экспериментов.
ОБ ЭЛЕКТРИЧЕСКОМ РЕЗОНАНСЕ
Эффект резонанса все чаще и чаще упоминается инженерами, и приобретает все большую важность при практическом использовании всех типов аппаратов, работающих от переменного (тока. Поэтому в отношении этих эффектов следует привести несколько общих замечаний. Общеизвестно, что при успешном применении эффекта резонанса в практической работе устройств, отпадает необходимость в использовании обратного провода, поскольку электрические колебания могут передаваться по одному проводу, а иногда даже лучше, чем с использованием двух проводов. Первы й вопрос, на который следует дать ответ, звучит так: "Можно ли целенаправленно создавать чистые резонансные эффекты? " И теоретические расчеты и экспериментальная практика показывают, что в Природе подобное невозможно. Это связано с тем, что при увеличении интенсивности колебаний, быстро возрастает негативное воздействие на тело, где происходят колебания, а также на окружающую его среду. Поэтому необходимо контролировать колебания, в противном случае они могут возрастать до бесконечности. Пожалуй, что невозможность создания чистого резонанса, является очень удачным обстоятельством. В противном случае, трудно даж е предположить, какими опасностями может грозить даж е самый невинный эксперимент. Но вполне возможно произвести резонанс определенного уровня. Величина данного эффекта ограничивается недостаточной проводимостью и эластичностью среды, или фрикционными потерями в целом.