Нильс Бор
Шрифт:
Троеточие в середине рассказа Пайса заменило опущенную фразу — она хороша как заключение:
«Может быть, лучше всего сказать, что сила Бора гнездилась в его поражающей интуиции и проникновенности мысли, а вовсе не в эрудированности».
Тут, как и во всем, сказывалась его натура: не рвавшийся быть впереди «по всем предметам», он не умел лелеять знания впрок. У его силы была своя уязвимость.
…За тридцать три года до Пайса вежливая улыбка недоверия поместилась на лице Хансена. Но, как и Пайс, Хансен увидел, что Бор не шутит: ему и вправду были незнакомы давно
— Тебе необходимо посмотреть эти формулы. Ты увидишь, с какой замечательной простотой они описывают спектры!
— Я посмотрю…
В таком ключе Бор впоследствии рассказывал Леону Розенфельду, чем завершился его первый разговор с Хансеном. Но могло ли тому прийти в голову, что столь мало сведущий в спектроскопии Нильс Бор вскоре будет приглашен оппонентом на защиту его, хансеновской, спектроскопической диссертации, как единственный знаток сути дела — физик, впервые понявший происхождение атомных спектров!
Они попрощались до новой встречи.
«Я посмотрю…»
Дальше была дорога домой. Снежные сумерки. Письменный стол. Зажженная лампа. Ничего сверхобычного. Но зимние волны Эрезунда уже выбросили на сушу запечатанную бутылку с посланием.
Он раскрыл немецкую книгу «Принципы атомной динамики» Штарка (и в ту же минуту ей суждено было навсегда устареть). Легко отыскал нужную страницу. И увидел формулу Бальмера. Как все формулы в научных сочинениях, она походила на паром, переправляющий мысль по чистой глади пробела с северного берега текста на южный. Зрелище было обыкновенным.
Но именно обыкновенностью своей оно, это зрелище, поразило Бора: формула могла сойти за неприхотливый примерчик по школьной алгебре. Из одной величины — ПЕРЕМЕННОЙ — вычиталась другая величина — ПОСТОЯННАЯ. И только! А это позволяло последовательно — шаг за шагом — узнавать все частоты электромагнитных колебаний в световых сигналах водорода.
ПОСТОЯННАЯ величина оставалась неизменной для всех спектральных линий, а ПЕРЕМЕННАЯ менялась от линии к линии действительно шажками: следовало лишь вместо неизвестного «х» подставлять по очереди ЦЕЛЫЕ числа…
Хансен был прав: водородный спектр описывался с замечательной простотой. Стоило в формулу Бальмера поставить число 3, и получалась частота световых колебаний для красной линии. А число 4 давало зеленую линию. Число 5 соответствовало синей. Число 6 — фиолетовой. Ну а для других целых чисел линии уходили в ультрафиолетовый конец спектра, простым глазом уже не видимый. Эта закономерная череда спектральных линий так и называлась «бальмеровской серией».
Школьному учителю швейцарцу Иоганну Якобу Бальмеру было шестьдесят лет, когда в 1885 году он опубликовал свою формулу — плод великого долготерпения. Он сумел ее вывести, «играя в числа». Это иронически называлось «цифрологией». Он не знал об устройстве атома ничего и располагал лишь короткой табличкой тогдашних данных о длинах световых волн в спектре водорода. Могущество арифметики и чутья
Увидев эту формулу, Бор уже не мог от нее оторваться. В минутном прозрении осозналось: вот оно — то, чего ему остро недоставало для понимания атома! Долгожданный паром. Сейчас он отчалит. Впереди откроется берег… Это была одна из поворотных минут в истории естествознания.
Если психологам творчества нужен наглядный пример научного откровения, лучшего не найти. Слово «откровение» было произнесено Бором в беседе с историками — так он сам почувствовал происшедшее. А Леон Розенфельд засвидетельствовал:
«Он говорил мне не раз: «Как только я увидел формулу Бальмера, все немедленно прояснилось передо мной».
Это и было событием, случившимся между 3 и 5 февраля. Это заставило его 5-го вечером продиктовать Маргарет шумную фразу о ВЕРЕ В БУДУЩЕЕ…
Работа не начинается с откровения. Оно само итог работы. Не милость случая, а награда за труд. Второе дыхание появляется, когда вся мускулатура мысли болит.
Прошло десять месяцев с того момента, как мысль с КВАНТОВОЙ конституции планетарного атома посетила Бора и зажила в нем. И когда он увидел простенькую формулу Бальмера, за ее незнакомыми очертаниями тотчас проступили перед ним давно знакомые очертания еще более простенькой формулы Планка для квантов энергии. Это было как наплыв на киноэкране, когда сквозь одно лицо вдруг проступает другое.
В ту минуту рука еще не потянулась к перу — за ненадобностью: вычислять на бумаге было еще нечего. Коротенькие перестройки несложных формул мелькали в уме, а воображение уходило все глубже в структуру атома. И странно подумать — туда заманивали мысль всего лишь две ничем не примечательные черты в бальмеровской формуле, те, что сразу поразили Бора: знак вычитания и череда целых чисел… Тысячи глаз на протяжении десятилетий видели этот знак минус и эти целые числа, а никто ничего не сумел увидеть за ними!
Что же увидел Бор?
…Серия световых сигналов атома водорода — это серия порций света. У каждой свой цвет, своя частота. И каждая рождается как разность двух величин — большей и меньшей. И ясно, что это за величины: первая — энергия атома ДО испускания кванта, вторая — ПОСЛЕ. (Любая порция чего угодно описывается такой арифметикой: от того, что БЫЛО, отнимается то, что ОСТАЛОСЬ, а разность — то, что УШЛО. Разность — квант.)
Но приковали к себе удивленное внимание особенности обеих величин. Тут-то начиналась неведомая прежде физика.
Первая — энергия ДО излучения, — хоть и была переменной, разной для разных квантов, однако не могла быть любой. Оттого, что зависела она от смены целых чисел, ей приходилось меняться не плавно, а ПРЕРЫВИСТО. И эта прерывистость говорила: в атоме есть череда — пунктирная последовательность — уровней энергии. Каждый квант, улетая, берет старт со своего уровня. Красный — с одного, зеленый — с другого, синий — с третьего, фиолетовый — с четвертого. Так для бегунов, бегущих по разным дорожкам, старты выстраивают ступенчато. И нельзя срываться в бег с любого места, а только с разрешенной отметки…