Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Предположим, что мог бы быть разработан гораздо более «здоровый» метод определения алгоритмов, в отношении которого вышеприведенная критика становилась бы беспочвенной. В некоторым роде, это как раз то, о чем я и говорю. «Здоровые» определения — это идеи , на которых базируется алгоритм. Но идеям, насколько нам известно, для своего выражения требуется разум, наделенный сознанием. А значит, мы вновь возвращаемся к проблеме определения сознания и тех его свойств, которые отличают обладающих сознанием существ от остального мира — и к вопросу о том, как, черт побери, естественный отбор мог оказаться достаточно «умным», чтобы развивать такие замечательныесвойства.
Результаты естественного отбора и в самом деле удивительны. Те скромные познания о функционировании человеческого мозга — и, разумеется, мозга любых других существ — которыми я обладаю, просто ошеломляют меня, заставляя испытывать благоговейный трепет. Работа отдельного нейрона поразительна, но все вместе нейроны представляют еще более впечатляющую структуру, с самого момента рождения насчитывающую огромное множество соединений
Если бы однажды нам довелось обнаружить то свойство, которое позволяет физическому объекту обретать сознание, то, изучив его во всех деталях, мы, вероятно, могли бы сконструировать подобные объекты для собственных нужд — хотя они не обязательно расценивались бы как «машины», в современном понимании этого слова. Нетрудно предположить, что такие объекты могли бы многократно нас превосходить, ибо они были разработаны специальнодля этой задачи — т. е. для обретения сознания. Им бы не пришлось вырастать из одной клетки. Им бы не пришлось нести на себе «багаж» предков (старые и «бесполезные» части мозга или тела, которые продолжают существовать в нас только благодаря «несчастьям», приключившимся с нашими далекими предками). Можно также представить себе, что благодаря этим преимуществам, такие объекты могли бы по-настоящемузаменять собой людей там, где (по мнению тех, кто согласен со мной) алгоритмические компьютеры обречены на выполнение обслуживающих функций.
Но вполне возможно, что тема сознания имеет гораздо больше аспектов. Может быть и так, что каким-то образом наше сознание действительно зависит от нашего наследия и от миллионов лет эволюции, лежащих у нас за спиной. Меня не покидает ощущение, что в самой эволюции, в ее явном «нащупывании» пути к какой-то будущей цели есть что-то загадочное и непостижимое. Кажется, что все организовано несколько лучше, чем оно «должно было быть» на основе слепой эволюции и естественного отбора. Вполне возможно, однако, что внешние проявления здесь обманчивы. Возможно, это как-то связано с тем способом, каким действуют физические законы, что позволяет естественному отбору протекать гораздо эффективнее, чем в случае, если бы этот процесс управлялся произвольными законами. Возникающее в результате явно «интеллектуальное нащупывание» — это отдельная интересная тема, к которой я вернусь несколько позже.
Неалгоритмическая природа математической интуиции
Как я уже указывал ранее, моя уверенность в том, что сознание способно влиять на характер суждений об истинности неалгоритмическим путем, опирается главным образом на результаты теоремы Геделя. Если мы видим, что сознание действует неалгоритмически при формулировании математическихсуждений, где вычисления и строгие доказательства являются непременным требованием, то уж наверняка нас нетрудно будет убедить и в том, что эта неалгоритмическая составляющая могла бы являться решающей и для роли сознания при более общих (не связанных с математикой) обстоятельствах.
Вспомним доводы, приведенные в главе 4 в рамках доказательства теоремы Геделя и устанавливающие ее применимость к решению вопроса о вычислимости. Там было показано, что какой бы (достаточно сложный) алгоритм ни использовал математик для установления математической истины или, что то же самое [215] , какую бы формальную системуон [216] ни принял для задания своего критерия истинности — всегда найдутся математические суждения, подобные сформулированному Геделем утверждению P k ( k ) для системы (см. Глава 4. «Теорема Геделя»), на которые его алгоритм не сможет дать ответа. Если ум математика работает полностью алгоритмически, то алгоритм (или формальная система), которые он обычно использует для построения своих суждений, оказываются не в состоянии справиться с утверждением P k ( k ), полученным с помощью его собственного алгоритма. Тем не менее, мы можем (в принципе) понять, что P k ( k ) на самом деле истинно! Этот факт, по всей видимости, должен был бы указать ему на противоречие, поскольку он , как и мы, не может не заметить его. А это, в свою очередь, может свидетельствовать о неалгоритмическомхарактере его рассуждений!
215
Как мы видели в главе 4, «Теоремы геделевского типа как следствие результатов, полученных Тьюрингом»), проверка справедливости доказательства в формальной системе всегда имеет алгоритмический xaрактep. И наоборот, любой алгоритм, который позволяет получать математически истинные утверждения, всегда можно добавить в систему аксиом и правил вывода обычной логики («предикатного исчисления»), тем самым создавая новую формальную систему выведения математических истин.
216
Разумеется, «он» означает «она или он». См. сноску 22 к гл 1 «Тест Тьюринга».
В
Если в голове у математика выполняется очень сложный алгоритм, то у нас не будет возможности узнать, что он из себя представляет, и поэтому мы не сможем сконструировать для него утверждение геделевского типа, не говоря уже об уверенности в обоснованности его применения.
Такого типа возражения часто выдвигаются против утверждений подобных тому, которое я привел в начале этого раздела, а именно, что теорема Геделя свидетельствует о неалгоритмическом характере наших математических суждений. Но сам я не нахожу это возражение слишком убедительным. Предположим на мгновение, что способы, которыми математики формируют осознанные суждения о математической истине действительно являютсяалгоритмическими. Попробуем, используя теорему Геделя, доказать абсурдность этого утверждения от противного ( reductio ad absurdum!).
Прежде всего мы должны рассмотреть возможность того, что разные математики используют неэквивалентныеалгоритмы для суждения об истинности того или иного утверждения. Однако — и это одно из наиболее поразительных свойств математики (может быть, почти единственной в этом отношении среди всех прочих наук) — истинность математических утверждений может быть установлена посредством абстрактных рассуждений! Математические рассуждения, которые убеждают одного математика, с необходимостью убедят и другого (при условии, что в них нет ошибок и суть нигде не упущена). Это относится и к утверждениям типа геделевского. Если первый математик готов согласиться с тем, что все аксиомы и операции некоторой формальной системы всегда приводят только к истиннымутверждениям, то он также должен быть готов принять в качестве истинного и соответствующее этой системе геделевское утверждение. Точно то же самое произойдет и со вторым математиком. Таким образом, рассуждения, устанавливающие математическую истину, являются передаваемыми [217] .
217
Некоторых читателей может беспокоить тот факт, что в среде математиков действительно существуют различные точки зрения. Вспомним рассуждения, приведенные в главе 4. Однако имеющиеся разногласия не так важны для нас. Они относятся только к в высшей степени абстрактным вопросам, касающимся очень больших множеств, в то время как мы вполне можем ограничиться утверждениями арифметического характера (с конечным числом кванторов существования и всеобщности) и применить дальнейшие рассуждения. (Возможно, здесь допущено некоторое преувеличение, поскольку принцип рефлексии, относящийся к бесконечным множествам, может иногда использоваться для вывода утверждений в арифметике.) Что касается крайне догматичного и не желающего соглашаться с Геделем формалиста, для которого такая вещь, как математическая истина, вообще не существует, то я его буду просто-напросто игнорировать, поскольку он явно не обладает способностью интуитивного понимания истины, которой посвящены наши рассуждения! Конечно, математики иногда допускают ошибки. Кажется, сам Тьюринг считал, что именно этои есть «лазейка», которая позволяет обойти аргументы геделевского типа в пользу того, что человеческое мышление существенно неалгоритмично. Но лично мне кажется невероятным, что свойство людей ошибаться каким-либо образом связано с нашей способностью к прозрениям! (Между прочим, генераторыслучайных чисел могут быть успешно реализованы при помоши алгоритмов.)
Отсюда следует, что мы, говоря об алгоритмах, имеем в виду не какие-то неясные разномастные построения, которые, возможно, рождаются и бродят в голове каждого отдельного математика, а одну универсально применяемую формальную систему, которая эквивалентнавсем возможным алгоритмам, использующимся математиками для суждений о математической истине. Однако мы никак не можем знать, является ли эта гипотетическая «универсальная» система той, которая используется математиками для установления истинности. Ибо в этом случае мы могли быпостроить для нее геделевское утверждение, и знали бы наверняка, что оно математически истинно. Следовательно, мы приходим к заключению, что алгоритм, который математики используют для определения математической истины, настолько сложен или невразумителен, что даже правомерность eго применения навсегда останется для нас под вопросом.