Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Возникает естественный вопрос: каким образом следует определять, остановится какая-то определенная машина Тьюринга (в которую введены конкретные начальные данные) или нет? Для многих машин Тьюринга ответить на этот вопрос нетрудно, но, как мы видели выше, иногда для ответа может потребоваться решение какой-нибудь до сих пор не решенной математической задачи. Так существует ли некая алгоритмическаяпроцедура для решения общей проблемы — проблемы остановки — полностью механическим путем? Тьюринг показал, что такой процедуры на самом деле нет.

В сущности, его доказательство сводилось к следующему. Предположим, наоборот, что указанный алгоритм существует [53] . Тогда существует и некая машина Тьюринга Н, которая «решает», остановится ли в конце концов n – я машина Тьюринга, действуя на число m . Условимся, что результатом действия машины Нбудет лента с номером 0, если n

я машина не останавливается, и с номером 1в противоположном случае:

53

Это хорошо известный и очень мощный метод математического доказательства, называемый «доказательством от противного» или reductio ad absurdum(сведение к абсурду), в котором сначала полагается истинным утверждение, исключающее исходное, затем из этой предпосылки выводится противоречие, которое и служит доказательством справедливости исходного утверждения.

Здесь мы могли бы воспользоваться способом кодирования пары ( n , m ), использованным ранее для универсальной машины Тьюринга U. Однако это привело бы к проблеме технического характера, поскольку при некоторых n (например, n = 7) T n будет определена некорректно, и маркер 111101будет непригоден для отделения на ленте n от m . Чтобы избежать этой проблемы, будем полагать, что n представлено не в двоичной, а в расширеннойдвоичной форме, тогда как для m будет по-прежнему использоваться обычная двоичная запись. В этом случае комбинации 110будет достаточно для разделения n и m . Использование точки с запятой в обозначении Н( n ; m ) в отличие от запятой в обозначении универсальной машины U( n , m ) указывает на это различие в кодировании.

Представим себе теперь бесконечную таблицу, в которую включены окончательные результаты действий всех возможных машин Тьюринга на все возможные (различные) входные данные. В этой таблице Nй ряд представляет собой результаты вычислений nй машины Тьюринга, полученные при ее работе последовательно с m = 0, 1, 2, 3, 4…:

Я немного «сжульничал» и не стал располагать машины Тьюринга по порядку их действительныхномеров. Если бы я так сделал, то получился бы список, начало которого выглядело бы слишком скучным, поскольку все машины при значениях n меньших 11 не дают ничего, кроме , а для n = 11 мы имеем просто нули. Дабы сделать начало этой таблицы более интересным, я предположил, что мы использовали некую гораздо более эффективную систему кодирования. Фактически, я просто присвоил ячейкам более или менее произвольные значения, только чтобы дать вам общее представление о том, как может выглядеть эта таблица.

На самом деле нам не требуется, чтобы эта таблица была построена путем вычислений, скажем, с помощью некоторого алгоритма. (На самом деле, как мы увидим далее, такого алгоритма и не существует.) Достаточно просто представитьсебе, что каким-то образом истинныйсписок попал в наше распоряжение, возможно, с помощью Бога! Если бы мы попытались получить эту таблицу с помощью вычислений, то именно символы вызвали бы затруднения, поскольку мы не могли бы с уверенностью сказать, когда в той или иной ячейке должен быть помещен символ — ведь соответствующие вычисления никогда не заканчиваются!

Тем не менее искомую таблицу можно, построить с помощью вычислительной процедуры, если использовать нашу гипотетическую машину Н, поскольку она могла бы определить, где на самом деле появляются значения . Однако вместо этого мы используем машину Ндля того, чтобы избавитьсяот появления значений в таблице, заменив их во всех случаях нулями. Это достигается за счет вычисления значения Н( n ; m ), предваряющего действие T n на m ,

после чего мы позволим T n производить соответствующие действия, только если H( n ; m ) = 1 (т. е. только тогда, когда вычисление T n (m) приводит к определенному результату), и будем просто записывать в соответствующую ячейку 0при Н( n ; m ) = 0 (т. е. если T n ( m ) = ). Мы можем записать эту новую процедуру, представляющую собой последовательное действие Н( n ; m ) и T(m), как

T n (m) х Н( n; m ).

(Здесь я использую общепринятую в математике договоренность о последовательности выполнения действий, согласно которой операция, записанная справа, должна выполняться первой. Обратите внимание, что в этом случае можно символически записать х 0 = 0.)

Теперь таблица принимает следующий вид:

Заметьте, что, исходя из предположения существования машины Н, мы получаем ряды таблицы, состоящие из вычислимыхпоследовательностей. (Под «вычислимой последовательностью» я понимаю бесконечную последовательность, элементы могут быть найдены один за другим посредством некоего алгоритма; это означает, что существует некоторая машина Тьюринга, которая, будучи применена поочередно к натуральным числам m = 0, 1, 2, 3, 4, 5…, производит члены рассматриваемой последовательности.) Обратите внимание на следующие два факта относительно этой таблицы. Во-первых, любаявычислимая последовательность натуральных чисел должна появиться где-то (может быть, далеко не сразу) среди рядов таблицы. Это свойство выполнялось уже и для исходной таблицы, содержавшей значения . Мы просто добавилинесколько рядов, чтобы заменить «фиктивные» машины Тьюринга (т. е. такие, которые приводят к хотя бы в одном случае). Во-вторых, считая, что машина Тьюринга Hсуществует, мы получили таблицу вычислительным путем(т. е. с помощью некоторого определенного алгоритма), а именно, посредством процедуры T n (m) х Н( n ; m ). Иными словами, существует некая машина Тьюринга Q, применение которой к паре чисел ( n , m ) дает значение соответствующей ячейки таблицы. Для этой машины числа n и m на ленте можно кодировать таким же образом, как и для H, т. е. мы имеем

Q( n ; m ) = T n ( m ) х H ( n ; m ).

Воспользуемся теперь разновидностью остроумного и мощного приема, так называемого диагонального процессаГеорга Кантора. (Мы познакомимся с оригинальным вариантом этого метода в следующей главе.) Рассмотрим значения в ячейках, расположенных на главной диагонали таблицы — диагональные элементы (матрицы), — выделенные жирным шрифтом:

Эти элементы образуют некоторую последовательность 0,0,1,2,1,0, 3,7,1…., к каждому члену которой мы теперь прибавим единицу:

1, 1, 2, 3, 2, 1, 4, 8, 2…

Это, безусловно, механическая процедура, и, поскольку наша таблица была получена путем вычислений, мы получим новую вычислимую последовательность 1 + Q( n ; m ), т. е.

1 + T n ( n ) х H ( n ; n )

Поделиться:
Популярные книги

Брак по принуждению

Кроу Лана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Брак по принуждению

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Потусторонний. Книга 1

Погуляй Юрий Александрович
1. Господин Артемьев
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Потусторонний. Книга 1

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Бригадир

Вязовский Алексей
1. Бригадир
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Бригадир

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Господин моих ночей (Дилогия)

Ардова Алиса
Маги Лагора
Любовные романы:
любовно-фантастические романы
6.14
рейтинг книги
Господин моих ночей (Дилогия)

"Фантастика 2024-161". Компиляция. Книги 1-29

Блэк Петр
Фантастика 2024. Компиляция
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
рпг
5.00
рейтинг книги
Фантастика 2024-161. Компиляция. Книги 1-29

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)