Чтение онлайн

на главную - закладки

Жанры

Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта
Шрифт:

Актуальные сегодня способности «воспринимать, распознавать и идентифицировать» – это те ключевые понятия, которые отличают точку зрения Розенблатта на AI от того, что вкладывали в представление об AI отцы-основатели, ведомые Минским и Маккарти. Розенблатт не пытался возложить на машину свойственные человеку функции, но предложил использовать ее для расширения способностей человека. Информация о достижениях Розенблатта вышла на национальный уровень, The New York Times оценила их как революционные, газета вышла под заголовком «Новое военно-морское устройство обучается в процессе работы», примерно так же отреагировала и остальная пресса. Если учесть практическую ценность исторического наследия персептрона, то мы вправе сказать, что наше нынешнее представление об AI существенно ближе к тому, как понимал его Розенблатт, чем те, кто работал в МТИ. Он считал, что задача AI не в замещении человека при решении тех задач, на которые он способен, а восприятии, распознавании и идентификации потока данных со скоростью

и в объемах, на которые человек не способен. Именно так сейчас трактуется AI. Если с этим согласиться, то вопреки сложившейся традиции местом рождения AI следует считать не Дартмутский колледж, а Корнельский университет, поскольку там появился только лишь термин AI, а Розенблатт наполнил его современным содержанием.

На момент создания персептрона его автору было всего 30 лет. Он, как и значительная часть специалистов первого поколения в области AI, по случайному, а может быть и не случайному совпадению родился в семье выходцев из Украины, в пригороде Нью-Йорка называющемся Нью-Рошель с преимущественно еврейским населением. Здесь он окончил Bronx High School of Science и поступил в Корнельский университет. На год позже, заметим, ту же самую школу закончил Марвин Минский, еще один сын эмигрантов из Российской империи, однако избравший МТИ для продолжения образования. По школе оба знакомы, их отношения даже можно назвать дружескими, к тому же и первая научная работа Минского тоже связана с нейронными сетями. Но в последующем научные интересы школьных друзей заметно разошлись, и даже вылились в острую, но сугубо научную полемику, отчего нередко их изображают злобными антагонистами, хотя сам Розенблатт считал своего школьного товарища всего лишь «лояльным оппозиционером».

Розенблатт не только ученый, но и инженер, уже в процессе написания диссертации в 1956 году он разработал специализированное устройство EPAC (Electronic Profile Analyzing Computer). Простейший EPAC получил развитие в созданном в 1960 году Розенблаттом более серьезном устройстве Mark-1, которое обладало в зародыше тем, что сейчас называют компьютерным зрением. Это была электромеханическая машина, снабженная матрицей из фотосенсоров 20х20, моделирующая двухуровневый персептрон и способная обучаться распознаванию алфавитно-цифровых символов. Сегодня она размещена в Смитсоновском музее в Вашингтоне. Машину не стоит путать с ее тезкой Mark I, построенной 1937–39 годах Говардом Айкеном (Howard Aiken, 1900–1973).

В отличие от других первопроходцев, для Розенблатта создание AI не стало самоцелью, он остался нейропсихологом, исследовал вопросы передачи выученных механизмов поведения от одних крыс другим с помощью вытяжек из головного мозга, опубликовал по этой теме немало работ и в конечном итоге доказал невозможность переноса памяти и навыков. У Розенблатта был широкий круг интересов, его увлекала астрономия, он создал собственную обсерваторию, где работал со студентами, и в не меньшей мере парусный спорт. Это опасное хобби привело Розенблатта к гибели во время прогулки по Чесапикскому заливу в возрасте 43 лет. Невольно на память приходит другая трагедия, в 2007 не вернулся из однодневного путешествия на яхте один из крупнейших авторитетов в компьютерной науке Джим Грей.

В том, что Розенблатт оставил работу над персептроном, нередко упрекают Марвина Минского с его книгой «Персептроны». В пользу того, что подобные утверждения ошибочны, говорит хотя бы то, что книга была издана за год до гибели Розенблатта, то есть прошло более пяти лет с того момента, когда тот оставил эту тему. Минский и Папперт математически убедительно показали ограничения, присущие усовершенствованному ими одноуровнему персептрону. Они связывали эти ограничения с существовавшими на тот момент слабостями параллельных вычислений, необходимых для реализации идеи персептрона. Это дало основания говорить о «заказном» характере книги, а также о том, будто она повлияла на пути развития AI, сместив научный и общественный интерес и, что не менее важно, поток субсидий правительственных организаций США на проповедуемый ими символьный подход к AI. На самом деле все проще, успеху символического подхода способствовала потенциальная возможность реализации на существовавших компьютерах, а для персептрона не было аппаратной основы.

Много позже заслуги Розенблатта были должным образом оценены, IEEE (Institute of Electrical and Electronics Engineers) в 2004 году учредил награду его имени за достижения в области коннекционизма и нейронных сетей. Среди удостоенных ею Владимир Вапник и Джеффри Хинтон.

Нейрон MCP на мемисторах

Менее известен работа профессора Стэнфордского университета Бернарда Уидроу (Bernard Widrow, 1929) и его аспиранта Тэда Хоффа (Edward Hoff, 1937), попытавшихся перенести функционал персептрона на устройства, названные мемисторами и создать из них ANN. Они не были ни нейропсихологами, ни математиками, а всего лишь инженерами, специалистами в области электротехники, поэтому исследования в области ANN не заняли главного места в их жизни. Уидроу был и остается специалистом в области адаптивных фильтров, а Хофф позже вошел в историю как один из создателей первого микропроцессора Intel 4004.

В 1968 году он перешел в Intel, став двенадцатым в списке сотрудников начинающей компании, а много позже первым почетным сотрудником (Intel Fellow).

Но ранее в своей диссертации Хофф предложил LMS-алгоритм адаптивной фильтрации, основанный на методе наименьшего квадрата. Этот алгоритм широко используется в различных устройствах до настоящего времени и он стал основой для метода обучения по Уидроу и Хоффу (Widrow-Hoff Learning) и реализован на устройствах, изобретенных Уидроу и названных им мемистром (memistor). Мемистор представляет собой резистор с памятью, его не следует путать с близком по названию устройством мемристор (memristor, memory resistor), изобретенным на 10 лет позднее. Мемистор похож на триод, он тоже имеет три контакта, на два подается питающее напряжение, а на третий управляющий сигнал, а у мемристора всего два контакта, он способен запоминать свое состояние после прохождения по нему тока. Широкого распространения мемисторы не получили, но Уидроу и Хофф в 1960 году смогли реализовать на них одноуровневый нейрон по модели MCP, названный ими ADALINE (Adaptive Linear Neuron), а через два года и многоуровневый MADALINE (Many ADALINE).

Метод обратного распространения ошибок

Backpropagation (backward propagation of errors) переводится буквально как обратное распространение ошибок. Сегодня так называют наиболее популярный метод обучения многослойных персептронов, то есть нейронных сетей с прямой связью (feedforward neural network). Такие сети отличаются возможностью реализовать в них обратную связь, этот необходимый компонент практически любого самообучения.

В данном случае использование обратной связи в процессе обучения предполагает два прохода по всем слоям сети: прямого и обратного. При прямом проходе входной поток данных подается на входной слой нейронной сети, после чего он распространяется по сети от слоя к слою. В результате генерируется набор выходных сигналов, который и является фактической реакцией сети на данный входной образ. Во время прямого прохода все синаптические веса сети фиксированы. Во время обратного прохода все синаптические веса настраиваются в соответствии с правилом коррекции ошибок, а именно: фактический выход сети вычитается из желаемого, в результате чего формируется сигнал ошибки. Этот сигнал впоследствии распространяется по сети в направлении, обратном направлению синаптических связей. Отсюда и название – алгоритм обратного распространения ошибки. Синаптические веса настраиваются с целью максимального приближения выходного сигнала сети к желаемому.

У этого термина на удивление сложная история, backpropagation был впервые предложен Розенблаттом в 1961 году, а в 1974 году метод backpropagation описал в своей диссертации Пол Вербос (1947), но тогда на его алгоритмы научное сообщество не обратило внимание. В 1990 году Вербос опубликовал обзорную статью «Backpropagation сквозь время: на что оно способно и как оно это делает» (Backpropagation Through Time: What It Does and How to Do It), где отдает должное ряду ученых, в том числе Хинтону и Лекуну, и подчеркивает, что метод backpropagation может быть использован не только в приложении к ANN, но и к другим динамическим системам.

В последнее время странным образом возник интерес к проблеме приоритета. Такое бывает, когда наступает время какой-то идеи и она приходит на ум многим одновременно, дискутировать о приоритете в таких случаях лишено какого-либо смысла. Тем не менее полемику за право считать определенного ученого первооткрывателем backpropagation активно навязывает швейцарец Юрген Шмидхубер. Он работает в альтернативном направлении, которое называется долгой краткосрочной памятью LSTM (Long short-term memory), связываемого рекуррентными нейронными сетями. Шмидхубер отдает приоритет финну Сеппо Линнаймма, но при этом находит предпосылки к этому методу даже у Леонарда Эйлера, Огюстена Коши и еще у полутора десятка математиков, работавших в XX веке. Сильнейший гнев у Шмидхубера вызвало присуждение Honda Prize 2019 Джеффри Хинтону с формулировкой «… за достижения в области AI, включая алгоритм Backpropagation…» И в самом деле, непонятно чем руководствовалось жюри, вручающее награды за достижения в области экологических технологий, но оно допустило очевидный ляп! Что же касается скандала, устроенного Шмидхубером, то, скорее всего, поводом для него стал тот факт, что его обошли при награждении Тьюринговской премией 2018 за достижения в области глубокого обучения. Премия тогда досталась троим – Джефри Хинтону, Джошуа Бенджо и Яну Лекуну, но не ему, что на самом деле не вполне справедливо, учитывая и его достижения. Сложившаяся ситуация вынудила Хинтона прилюдно оправдываться за явную оплошность со стороны жюри Honda Prize, впрочем, что мешало ему заранее ознакомиться с формулой награждения? На фоне этой полемики особенно удивительно выглядит статья «Метод обратного распространения ошибки» в русскоязычной википедии, она явно выдержана в духе одиозных доказательств российского приоритета на любые изобретения, характерных для сталинских времен. Разногласия относительно приоритета естественны, они возникают по той причине, что сама по себе идея обратной связи в обучении очевидна, к ней пришли многие исследователи независимо друг от друга.

Поделиться:
Популярные книги

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Имя нам Легион. Том 9

Дорничев Дмитрий
9. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 9

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Адвокат Империи 2

Карелин Сергей Витальевич
2. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 2