Обмен веществ и энергии в клетках организма
Шрифт:
Рис. 12. Схема переноса электронов хлорофилла в процессе синтеза АТФ (фосфорилирования). При нециклическом фосфорилировании за счет энергии ФС II идет синтез АТФ, а за счет ФС I идет синтез НАДФ · 2Н. При циклическом фосфорилировании работает только ФС I и происходит синтез АТФ
Под действием света происходит возбуждение молекул хлорофилла ФС I и ФС II, которые, поглощая кванты света, испускают возбужденные электроны. За счет энергии электронов, летящих по цепи ферментов от ФС II к ФС I, происходит синтез молекул АТФ. Этот процесс
АДФ + Фн
где Фн — неорганический фосфат H3PO4.
Электроны ФС II, потерявшие энергию, попадают на ФС I, которая является их конечным акцептором.
Электроны, покидающие хлорофилл фотосистемы ФС I при поглощении света, также попадают на электроннотранспортную цепь. Но за счет их энергии идет соединение протонов Н+ с переносчиком НАДФ+.
Электроны, которые теряет ФС I, восполняются электронами ФС II, а электроны, отданные молекулой воды при фотолизе, восполняют электроны, потерянные хлорофиллом ФС II, и он также восстанавливается:
хлорофилл+2 + 2e
На мембране имеются специальные протонные каналы, по которым в определенный момент ионы водорода могут переходить из Н+– резервуара тилакоида в строму хлоропласта. Каналы связаны с ферментом АТФ-синтетазой. Когда возбужденные электроны ФС I, двигаясь по мембране, достигают протонного канала, он открывается и в него устремляются ионы водорода. Этот процесс сопряжен с синтезом АТФ и происходит синхронно.
С наружной стороны мембраны тилакоида, т. е. в строме хлоропласта, скапливаются молекулы переносчика водорода НАДФ+ в окисленном состоянии. Они принимают электроны от ФС I, за счет чего происходит их соединение с ионами водорода Н+ и образование НАДФ · 2H:
НАДФ+ + 2H+ + 2e
Синтез АТФ и НАДФ · 2Н протекает на мембранах тилакоидов и сопряжен с переносом возбужденных электронов по электронно-транспортной цепи. Таким образом, энергия солнца преобразуется в энергию возбужденных электронов, а далее запасается в процессе синтеза в молекулах АТФ и НАДФ · 2Н.
Суммарное уравнение реакций световой фазы:
H2O + НАДФ+ + 2АДФ + 2Фн
Темновая фаза
Глюкоза непосредственно синтезируется в темновую фазу фотосинтеза. Для этих реакций наличие света необязательно. Эту фазу иначе еще называют фиксацией углекислого газа, так как здесь происходит усвоение углекислого газа и его восстановление.
Реакции темновой фазы (рис. 13) протекают
Рис. 13. Общая схема темновых реакций фотосинтеза. Цикл Кальвина
В строме хлоропласта постоянно присутствует пятиуглеродный углевод (пентоза), связанный с двумя остатками фосфорной кислоты — рибулозодифосфат.
Это вещество как бы начинает цикл. Первая реакция связана с соединением молекул углекислого газа с рибулозодифосфатом. Происходит фиксация неорганического углерода.
Образующееся шестиуглеродное соединение неустойчиво и сразу же распадается на два триозофосфата.
Далее происходит активирование этих веществ молекулами АТФ. Энергия АТФ расходуется на синтез триозодифосфатов, которые становятся активными (рис. 14):
С5– углевод-2Ф + CO2
2С3Ф + 2АТФ
Рис. 14. Фиксация углерода, его фосфорилирование и восстановление
После этого происходит восстановление триозодифосфатов молекулами НАДФ · 2Н:
2С3~2Ф + 2НАДФ · 2Н
Две молекулы триозы соединяются между собой, и образуется глюкоза, которая может в дальнейшем превращаться в сахарозу, крахмал и другие полисахариды:
2С3
Часть молекул триоз может использоваться для синтеза аминокислот, глицерина, высших жирных кислот.
Частично триозы продолжают участвовать в циклических реакциях и превращаются вновь в пентозу, которая замыкает цикл.
В реакции участвуют одновременно шесть молекул каждого вещества. Таким образом, для синтеза одной полностью новой молекулы глюкозы цикл должен повториться шесть раз, т. е. должно усвоиться шесть молекул CO2.
Освобожденные молекулы АТФ и НАДФ+ вновь возвращаются к мембранам тилакоидов для участия в световых реакциях.