Общая теория роста человечества
Шрифт:
1=10, 10=101, 100=102, 1 миллион =106 и 1 миллиард = 109.
В теоретических
Для описания развития всего человечества, рассматриваемого как единая демографическая система, следует перейти к следующей степени зависимости скорости роста, пропорциональной уже квадрату численности населения. Это очень существенный шаг, который приводит к гиперболическому закону роста, который быстрее любого экспоненциального роста и уходит в бесконечность при конечном времени расходимости.
Представить такой процесс лучше всего на двойной логарифмической сетке. На ней и время, и численность населения откладываются в логарифмическом масштабе. В этом случае гиперболический рост, соответствующий обратной пропорциональности численности населения и времени, изобразится прямой, но с отрицательным наклоном. Именно таким графиком будет описываться зависимость численности населения мира от времени.
3.3 Гиперболический рост населения мира
Приведенные расчеты показывают, что ни линейный, ни экспоненциальный рост не могут описать развитие человечества за сколько нибудь значительное время. Демографические данные за много поколений свидетельствуют, что рост человечества хорошо укладывается только на гиперболическую кривую (см. рис. 1.1). В этом случае скорость роста пропорциональна квадрату полного числа людей. Переход к следующей степени зависимости скорости роста от числа людей, по сравнению с экспонентой, может показаться формальным шагом. Однако более глубокое рассмотрение показывает, что именно такая зависимость не только отвечает данным демографии за продолжительное время, но и обладает всеми свойствами, которым должен удовлетворять системный подход, поскольку в ней проявляется взаимодействие, охватывающее всех людей на Земле.
Рис 3.3 Гиперболический рост в линейном и логарифмическом масштабах:
A: N=100/(T1– T), B: N=104(T1– T). T1– - особая точка обострения роста, момент, в котором население стремится к бесконечности. На шкале логарифмов T1 как 0 не отображается
Зависимость скорости роста от квадрата численности населения существенно нелинейная и не аддитивная, и потому применима только ко всему населению Земли, а не к отдельной стране или региону. Математически это выражается
Гиперболический рост, описываемый степенной функцией, обладает еще одним существенным свойством -- такое развитие динамически самоподобно, причем его логарифмическая скорость постоянна, и на двойной логарифмической сетке такой рост изображается прямой линией (рис. 3.3). Так если население выросло в 10 раз, то и время, отсчитываемое от определенного момента, соответственно изменилось в 10 раз. Легко видеть, что линейный рост обладает этим же свойством, а экспоненциальный -- нет. В последнем случае при изменении численности в 2 раза время изменяется на время удвоения, а не в 2 раза.
Рост по гиперболе обращается в бесконечность по мере приближения к моменту расходимости -- особой точке для функции роста. Именно это соответствует наступлению демографического взрыва и отвечает, так называемому, режиму с обострением. В реальных условиях в этой области вступают в силу факторы, ограничивающие рост.
Анализ данных демографии приводит к простой формуле:
N = C/(T1– T) = 186 / (2025-T) млрд, (3.1;П.4)
где N -- число людей на Земле в момент времени T; T1– - критическая дата от Рождества Христова; C -- постоянная с размерностью [человекогоды].
Здесь и далее в скобках с буквой П указаны номера формул в Приложении, посвященном математической теории.
Однако принятие квадратичного закона, приводящего к гиперболической кривой роста, обращающейся в бесконечность за конечное время, смущало многих исследователей. Из формулы (3.1) следует, что критическое время расходимости очень близко, и если тенденция роста, имевшая место до 1965 г., сохранится, такое время наступит в T1=2025 г. Это обстоятельство привело к тому, что некоторые (одни -- с юмором, а другие -- с ужасом!) увидели в описании демографического взрыва предвестника конца света [52].
Но указанный гиперболический рост приводит к абсурдному результату и в далеком прошлом, поскольку 20 млрд лет тому назад уже должно было бы быть 10 человек, несомненно космологов, которые могли бы наблюдать сотворение Вселенной. Очевидно, гиперболический закон роста имеет ограниченную область применения, и это то, чего от подобных степенных законов следует ожидать. Исходя из этого и следует установить границы роста числа людей по гиперболе как в прошлом, так и в будущем.
Рис. 3.4 Прохождение странами демографического перехода
1 -- Швеция, 2 -- Германия, 3 - СССР (Россия), 4 -- США, 5 -- Маврикий, 6 -- Шри-Ланка, 7 -- Коста-Рика, 8 -- Модель. Данные графиков сглажены. Ср. с рис. 10.1.
Следует предположить, что в далеком прошлом скорость роста не могла быть меньше одного человека, вернее гоминоида, за поколение или характерное время . Этого простого предположения оказалось достаточно для того, чтобы дать оценку начала процесса образования человечества 4-5 млн лет тому назад. Развитие происходит до тех пор, пока скорость роста не становится столь большой, что система больше не может развиваться в таком самоускоряющемся режиме. Фактор, который должен быть снова учтен, есть время , характеризующее жизнь человека -- его репродуктивную способность и продолжительность жизни. Этот фактор проявляется при прохождении через демографический переход -- процесс, характерный для всех популяций, который хорошо виден на примерах как развитых стран, так и развивающихся, в частности, представляющих регионы Африки, Азии и Южной Америки [73] (рис 3.4).