Объясняя мир. Истоки современной науки
Шрифт:
4. Теорема Пифагора
Так называемая теорема Пифагора – самая знаменитая во всей планиметрии. Хотя ее доказательство приписывают ученикам и последователям Пифагора, например, Архиту Тарентскому, в точности история ее создания неизвестна. Здесь я приведу простейшее доказательство, основанное на понятии пропорциональности, широко применявшемся древнегреческими математиками.
Рассмотрим треугольник с вершинами A, B и P, у которого угол при вершине P является прямым. Теорема утверждает, что площадь квадрата, сторона которого равна AB (гипотенуза треугольника), равняется сумме площадей квадратов, стороны которых равны двум другим сторонам того же треугольника, катетам AP и BP. Говоря языком современной алгебры, рассматривая AB, AP
Чтобы доказать теорему, следует провести перпендикуляр к гипотенузе AB из вершины P. Обозначим точку его пересечения с гипотенузой C (см. рис. 2). Таким образом мы поделим исходный треугольник ABP на два меньших прямоугольных треугольника APC и BPC. Легко видеть, что оба меньших треугольника подобны исходному прямоугольному треугольнику, то есть все углы в них те же самые, что и в большом. Если мы обозначим углы при вершинах A и B (альфа) и (бета), то у треугольника ABP будут углы , и 90°, и значит, + + 90° = 180°. В треугольнике APC два угла равны и 90°, значит, третий угол равняется . Аналогично в треугольнике BPC два угла равны и 90°, следовательно, третий угол равен .
Так как все три треугольника взаимно подобны, их соответствующие стороны пропорциональны. Это означает, что длина катета AC относится к длине гипотенузы AP треугольника ACP так же, как длина катета AP к длине гипотенузы AB в исходном треугольнике ABP. Соответственно, BC относится к BP в той же пропорции, что и BP к AB. Мы можем выразить это в более привычной алгебраической форме, связав длины сторон пропорцией:
Отсюда очевидно следует, что AP^2 = AC x AB, а BP^2 = BC x AB. Складывая два этих уравнения вместе, получаем:
Но AC + BC = AB, что и требовалось доказать.
Рис. 2. Доказательство теоремы Пифагора. Согласно теореме, сумма площадей квадратов, стороны которых равны катетам AP и BP, равняется площади квадрата, стороной которого является гипотенуза AB. Для доказательства теоремы из точки P в точку C проводится перпендикуляр к гипотенузе AB.
5. Иррациональные числа
Математикам Древней Греции были известны лишь рациональные числа. К ним относятся все целые числа, например, 1, 2, 3 и т. д. или целочисленные дроби – 1/2, 2/3 и т. п. Если отношение длин двух отрезков выражалось целочисленной дробью, древнегреческий математик считал, что они «соизмеримы». К примеру, если они находятся в отношении 3/5, это означает, что если один из этих отрезков отложить три раза, а другой пять
Допустим, что есть рациональное число, выраженное дробью p/q (где p и q – целые числа), чей квадрат равен 2:
В таком случае будет бесконечное количество таких пар чисел, которые можно получить, умножая p и q на любой натуральный множитель, но предположим, что целые числа p и q – наименьшие целые, для которых верно выражение (p/q) 2 = 2. Из уравнения выше следует, что
Отсюда очевидно, что p^2 – четное число, но так как произведение двух любых нечетных чисел есть нечетное число, то p должно быть только четным. То есть мы можем записать равенство p = 2p', где p' – целое число. Но тогда
и, повторяя предыдущую цепь рассуждений, находим, что число q также четное и может быть выражено равенством q = 2q', где q' – целое число. Но тогда p/q = p'/q', и значит,
где p' и q' – целые числа, которые в два раза меньше p и q соответственно. А это противоречит исходному предположению, что p и q – наименьшие целые числа, для которых равенство (p/q)^2 = 2 справедливо. Мы имеем противоречие, и, следовательно, такие числа не могут существовать.
Теорема явным образом обобщается: любое число, например, 3, 5, 6 и т. д., которое само не является квадратом целого числа, не может быть квадратом рационального числа. Например, если 3 = (p/q)^2, где p и q – наименьшие целые числа, для которых это равенство справедливо, то p^2 = 3q^2, но это невозможно, если только нет такого целого p', для которого p = 3p', но тогда q^2 = 3p'^2, и q = 3q' для некоего целочисленного q', и, значит, 3 =(p'/q')^2, что противоречит предположению о том, что не существует целых чисел меньше p и q, для которых p2 = 3q2. Поэтому квадратные корни чисел 3, 5, 6, … иррациональны все.