Чтение онлайн

на главную - закладки

Жанры

Обыграй дилера: Победная стратегия игры в блэкджек
Шрифт:

После этого разыграйте еще 400 раздач, следуя правильной стратегии прикупа и остановки против туза (по таблице 3.5). Разность выигрышей и проигрышей дает суммарный выигрыш по 400 раздачам. Превышение выигрышей над проигрышами за 400 раздач при таком использовании прикупа и остановки составляет в среднем 17,2 раздачи. Удвоение ставки в среднем дает превышение выигрышей над проигрышами, равное 5,0 раздачам.

Третий эксперимент: разделение пары шестерок против пятерки

В соответствии с таблицей 4е преимущество от разделения пары по сравнению с остановкой составляет в этом случае 17,2 + 10,2, то есть 27,4 %. Если игрок не останавливается, он получает на 100 раздачах суммарный проигрыш 10,2 единицы. Если он разделяет пару, 100 ставок превращаются в 200, и из этих 200 раздач игрок выигрывает приблизительно на 17,2 раздачи больше, чем проигрывает. Разделяя пару, а не останавливаясь, игрок получает на 100 исходных раздач среднее суммарное преимущество 27,4 единицы. Пятьдесят исходных раздач каждого типа должны быть достаточно показательны.

Имитация дилера

Как

сказано в работе Болдуина и др. [2, с. 439], «ожидаемый результат игрока, который имитирует поведение дилера, прикупает к 16 или меньшей сумме, останавливается при 17 или больше, никогда не удваивает ставок и не разделяет пар, составляет -0,056». Другими словами, дилер имеет перед ним преимущество 5,6 %.

Проиллюстрируем применение таблицы 1 на примере вычисления результата для игрока, имитирующего поведение дилера. Прежде всего заметим, что, если игрок следует этим правилам, игра становится симметричной, за исключением двух ситуаций. Если и игрок, и дилер перебирают, то дилер выигрывает. Будем считать, что у дилера перебор, если он перебрал бы при дальнейшем розыгрыше несмотря на то, что игрок также перебрал и уже потерял свою ставку. Это правило выгодно дилеру. Преимущество, которое оно дает ему, равно вероятности одновременного перебора у игрока и у дилера. Поскольку предполагается, что игрок и дилер используют одну и ту же стратегию, данные таблицы 1 («Вероятности комбинаций дилера») относятся к ним обоим. Тогда полная вероятность перебора у каждого из них равна 0,2836, а вероятность одновременного перебора обоих (в предположении стохастической независимости, которое, строго говоря, неверно, но дает в данном случае достаточно хорошее приближение при почти полной колоде) составляет 0,2836 · 0,2836, то есть связанное с этим фактором преимущество дилера составляет 8,04 %. Второе нарушение симметрии такой игры связано с тем, что если игроку, но не дилеру приходит натуральный блэкджек, игрок выигрывает 1,5 единицы. И в то же время, если натуральный блэкджек приходит дилеру, но не приходит игроку, дилер выигрывает одну единицу. Такое происходит в 4,68 % случаев для каждой из сторон, так что преимущество игрока, связанное с этим фактором, составляет половину этой величины, то есть 2,34 %. Итого, суммарное преимущество дилера равно (8,04 – 2,34) = 5,7 %.

Игрок, который никогда не перебирает

Также интересно вычислить величину преимущества, которое казино имеет перед игроком, никогда не прикупающим к руке, на которой возможен перебор. Отметим прежде всего, что это означает, что для такого игрока все жесткие суммы остановки равны 12. Однако мягкие суммы остановки не определены. В таком случае поставленная задача не имеет смысла. Поскольку в такой формулировке задача бессмысленна, мы будем исходить из предположения, что мягкие суммы остановки равны 17. Как уже было указано выше, мягкая сумма остановки не может быть меньше 17 просто исходя из соображений здравого смысла. Поскольку, как мы знаем, 18 иметь выгоднее, чем 17, мягкая сумма остановки, равная 17, дает игроку большую среднюю долю проигрышей, чем мягкая сумма остановки, равная 18. Мы будем называть игрока, использующего такую любопытную стратегию, «осторожным» или «консервативным».

Мы утверждаем, что заведение имеет перед консервативным игроком преимущество, составляющее от 5 до 8 %. Доказательства этого утверждения проистекают из трех источников. Во-первых, мы провели эксперимент, в котором консервативную стратегию использовали в розыгрыше шести групп по 100 раздач в каждой. Число единиц, проигранных игроком, составило от 13 до 2 со средним значением, равным 7. Это хорошо согласуется с нашим результатом (от 5 до 8 %). Поскольку число раздач, равное 600, было выбрано заранее и без учета результатов предыдущих раздач, к этим данным применимы стандартные формулы математической теории вероятностей. Мы заключаем, что истинное значение преимущества заведения почти несомненно лежит между 3 и 11 %. Во-вторых, мы произвели расчеты (для таких низких жестких сумм остановки их сравнительно легко выполнить без использования компьютера), доказывающие, что истинное значение заведомо меньше 10 %. В-третьих, и это наиболее действенный аргумент, Болдуин и его соавторы оценивают преимущество заведения перед игроком, который останавливается на жестких 12, никогда не удваивает ставок и разделяет только пары тузов и восьмерок, в 4,25 % (мягкие суммы остановки в этой работе не приводятся). Можно показать, что разделение пар тузов и восьмерок добавляет к преимуществу игрока менее 1 %. Поправка на различные мягкие суммы остановки, если она вообще существует, также в целом составляет порядка 1 или 2 %. Таким образом, истинное значение по данным этого источника лежит в диапазоне от 5 или 6 до 8 %.

Человек, который остриг своего парикмахера

Забавную иллюстрацию невыгодности такой консервативной игры дает опыт «человека, который остриг своего парикмахера» [24] , моего друга Джона Блаттнера, профессора математического факультета Колледжа штата в долине Сан-Фернандо [25] .

Как-то раз Блаттнер разговорился со своим парикмахером о блэкджеке. Когда Блаттнер рассказал, что один его друг написал книгу о том, как постоянно выигрывать в блэкджек, парикмахер только фыркнул. «Ну, это просто, – сказал он. – Выиграть может кто угодно, надо только не перебирать» (то есть всегда останавливаться на жестких 12). Блаттнер тщетно пытался доказать парикмахеру, что он ошибается. В конце концов парикмахер уговорил Блаттнера сыграть с ним вечером в блэкджек. Блаттнер принес с собой 160 долларов. Они стали играть со ставками по 5 и 10 долларов, и парикмахер быстро проиграл такую же сумму. Он постоянно восклицал, что Блаттнер – самый везучий человек, какого он когда-либо встречал. Проиграв 160 долларов, он не захотел закончить игру. Он потребовал

возможности отыграть свои деньги. Они стали играть со ставками по 20 долларов. Когда парикмахер проигрывал уже 1200 долларов, ему начало везти. Он отыграл 300 долларов из своего предыдущего проигрыша. Но потом все закончилось. Он проиграл в общей сложности 1500 долларов и вышел из игры.

24

Как мы увидим, эта история не лишена математической иронии. Следует объяснить читателю, далекому от математики, что речь идет о знаменитом парадоксе Бертрана Рассела. Предположим, что в некоем городке есть парикмахер, который стрижет тех, и только тех, кто не стрижет себя сам (предполагается, что каждого человека всегда стрижет один и тот же человек). Кто стрижет парикмахера? Если парикмахера стрижет кто-то другой, то парикмахера должен стричь парикмахер. Невозможно! Если же парикмахер стрижет себя сам, то парикмахер не может стричь парикмахера. Невозможно! Так кто же стрижет парикмахера?

25

С 1972 г. – Университет штата Калифорния в Нортридже. (Примеч. перев.)

Парикмахер до сих пор уверен, что Блаттнеру просто повезло. Он долго задерживал отдачу своего проигрыша. В конце концов он решил, что будет стричь Блаттнера бесплатно. Но через год такой бесплатной стрижки он пожаловался, что времена настали трудные, и снова стал брать с Блаттнера деньги. Впрочем, парикмахер все еще обещает когда-нибудь расплатиться с Блаттнером. Спрашивается, остриг ли Блаттнер своего парикмахера? [26]

4. Выигрышная стратегия

26

В более распространенной версии парадокса Рассела речь идет не о стрижке, а о бритье, что логично: люди, бреющиеся самостоятельно, встречаются гораздо чаще, чем те, кто сам стрижет свои волосы. (Примеч. перев.)

Игроки в азартные игры быстро выясняют на собственном опыте, что эти игры можно организовывать таким образом, что у одной из сторон будет некий «процент» преимущества перед другой. То есть при достаточно большом числе туров игры («на долгосрочном масштабе») выигрыш стороны, имеющей такое преимущество, обычно приближается к некой фиксированной доле суммы всех ставок, сделанных противником этой стороны. Современные игорные дома участвуют в своих играх на стороне, преимущество которой известно из практики. При необходимости казино изменяют правила игры так, чтобы их преимущество было достаточным для возмещения расходов и обеспечения желательной нормы прибыли на капитал, вложенный в казино их владельцами.

Суммарный объем сделанных ставок можно назвать «оборотом» игрока. Например, если я поставлю 3, 2 и 11 долларов, у меня «в обороте» будет 16 долларов. Игрок, располагающий определенным капиталом, обычно может иметь в обороте средства, многократно превышающие эту сумму, пока в конце концов не проиграет весь свой капитал заведению. Этим в значительной степени и интересны азартные игры.

Недостатки распространенных игровых систем

Попытки преодолеть преимущество казино делались неоднократно. Часто используемый подход состоит в варьировании размеров ставок от одной игры к другой в соответствии с разнообразными методиками, иногда простыми, а иногда весьма замысловатыми. Например, игрок, играющий по системе «малого мартингала» [27] , также известной под названием «системы удвоения», может сделать исходную ставку, скажем, размером 1 доллар. Если он проигрывает, в следующий раз он ставит 2 доллара. Затем он ставит 4, 8, 16 долларов и т. д., удваивая ставку до первого выигрыша. После этого процедура повторяется заново, начиная со ставки в доллар. Каждая ставка, сделанная после серии проигрышей, равна сумме всех проигрышей в этой серии плюс один доллар. Выигравшая ставка либо равняется доллару, либо ставке, сделанной после серии проигрышей. Таким образом, каждый выигрыш приносит 1 доллар чистой прибыли, считая с предыдущего выигрыша, и такой игрок выигрывает по доллару через каждые несколько ставок. Однако у этой системы есть один недостаток. Казино всегда ограничивает размер максимальной ставки. Предположим, что такой предел равен 500 долларам, а мы начинаем играть со ставки 1 доллар. В случае серии из девяти проигрышей (на ставках 1, 2, 4, 8, 16, 32, 64, 128 и 256 долларов) следующая ставка по «системе удвоения» должна быть равна 512 долларам, что не разрешено правилами.

27

В русском языке применительно к названию этой игровой системы также используется английское произношение, «мартингейл». Однако, хотя точная этимология этого слова неизвестна, оно происходит из французского языка, и сохранение французского чтения представляется более логичным. Интересно отметить, что в других значениях – в качестве названий вида стохастических процессов в теории вероятностей и элемента конской упряжи – по-русски используется только вариант «мартингал». (Примеч. перев.)

На практике оказывается, что такие ограничения максимальных ставок позволяют казино выигрывать тот же процент оборота, которые они выигрывают обычно, даже если игрок использует систему удвоения. Таким образом, система удвоения не дает игроку никакого преимущества. Другие, более сложные системы игры, по-видимому, обладают тем же недостатком. Поэтому неудивительно, что впоследствии было доказано, исходя из математической теории вероятностей, что для большинства распространенных азартных игр невозможно разработать систему ставок, которая хоть как-нибудь изменяла бы долговременное преимущество казино.

Поделиться:
Популярные книги

Генерал Скала и сиротка

Суббота Светлана
1. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Генерал Скала и сиротка

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма

Аргумент барона Бронина 2

Ковальчук Олег Валентинович
2. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 2

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Скрываясь в тени

Мазуров Дмитрий
2. Теневой путь
Фантастика:
боевая фантастика
7.84
рейтинг книги
Скрываясь в тени

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот