Обзор ядерных аварий с возникновением СЦР (LA-13638)
Шрифт:
Опорожнение бака происходило через нижнее сливное отверстие в емкости объемом 5 литров. Всего, 18–19 июля, из бака было извлечено 42,95 кг масла. По данным анализа, концентрация урана составила 173 г/л (анализ проводился люминесцентным методом с возможной погрешностью ± 30–40 %). Обогащение по урану-235 составило 22,6 %.
Возникновение и гашение цепной реакции имели следующие особенности. Масса фторидов урана накапливалась в масле длительное время, но наиболее интенсивно с 10.07.61 г. по 14.07.61 г. Ввиду малой скорости ввода реактивности и интенсивного
При включении насоса в 7 ч 30 мин масло, находившееся в полостях насоса, было вытеснено в трубу масляного бака. Тем самым система с центральной полостью перешла в систему полностью заполненного цилиндра. Механизм самогашения связан с эффектом повышения температуры, образованием пузырьков радиолитических газов от треков осколков деления в масле, что вызвало выброс части масла из бака обратно в полость насоса и газоочистку. Как и для первого разгона мощности, так и для второго остается неизвестным точное значение концентрации и количества масла, впрыснутого насосом в центральную трубу расширительного бака. Полное число делений за аварию оценивается значением около 1,2 X 1015.
Последствия данного инцидента следующие. Обследование оператора показало, что он был облучен дозой около 200 рад и перенес лучевую болезнь в сравнительно легкой форме. Других пострадавших не было. Разрушения оборудования, загрязнения помещений, потерь делящегося материала также не было.
10. Завод в Ханфорде, шт. Вашингтон, 7 апреля 1962 г. 18 19 20 21 22
Раствор плутония в передаточной емкости; многократные всплески мощности; три человека получили значительные дозы облучения.
Во время данной аварии, произошедшей на радиохимическом производстве с использованием системы Recuplex, имели место следующие процессы:
1) происходила зачистка дна колпака, предназначенного для экстракции растворителя;
2) продукт мог переливаться в колпак через край емкости, предназначенной для сбора продукта;
3) имелась временная линия от дна колпака к емкости для промежуточного хранения (около 460 мм в диаметре, объем 69 л);
4) очевидно, имела место неправильная работа вентилей.
Окончательно механизм, вызвавший всплеск мощности, не мог быть определен, так как показания свидетелей и операторов не полностью согласуются с техническими данными, выявленными комиссией по расследованию причин аварии. Имеется правдоподобная картина хода событий, хотя не могут быть исключены и другие механизмы. В результате переполнения емкости для сбора жидкости раствор перелился через край емкости в колпак, часть раствора с концентрацией Pu примерно 45 г/л оказалась на дне и в отстойнике колпака. Оператор, нарушив инструкции, открыл вентиль, в результате чего раствор поднялся в передаточную емкость. Последовавшее добавление водного раствора (от 10 до 30 л с концентрацией Pu 0,118 г/л) и дополнительное замедление нейтронов, как результат перемешивания и/или деаэрации содержимого бака, привели к всплеску мощности.
Полное энерговыделение передаточной емкости для промежуточного хранения составило 8 X 1017 делений, при этом энерговыделение в первом пике соответствовало, согласно оценке, не более чем 1016 делениям. После этого пика критичность сохранялась в емкости в течение 37,5 часов. При этом происходил постепенный спад мощности.
После срабатывания аварийной
Действия после аварии были уникальными. Маленький робот, оснащенный телевизором и дистанционным управлением, был использован для осуществления разведки внутри здания, точного определения места аварии (с помощью установленного на роботе направленного гамма-зонда), для снятия показаний приборов, размещения в заданных местах измерительной аппаратуры и для дистанционного управления вентилями.
Клейтон 19 предложил в 1963 году интересный механизм прекращения энерговыделения в этой аварии. В трубе, выходящей из дна аварийной емкости, был обнаружен дибутилфосфат со значительным содержанием плутония. Поэтому было сделано предположение, что все началось с того, что на поверхности водного раствора плутония образовался слой трибутилфосфата в четыреххлористом углероде. Тепло и радиация, выделявшиеся при реакции деления, могли привести к испарению CCl4 и превращению большей части оставшейся органики в дибутилфосфат. Более плотный дибутилфосфат, захватив выделенный плутоний, мог опуститься на дно сосуда и в трубу, где он уже не мог вносить ощутимый вклад в реактивность системы. Как это часто случается после аварии, трудно оценить правильность этого предположения, но оно, как кажется, дает разумное объяснение явлений.
11. ПО «Маяк», г. Озерск, 7 сентября 1962 г
Раствор нитрата плутония в реакторе-растворителе; три вспышки; незначительное облучение.
Авария произошла в цехе, где исходный продукт восстанавливали до металлического плутония, который далее очищали от примесей и превращали в слитки. В ходе этих процессов образуются шлаки, включая шлаки и тигли от литья, с разным содержанием плутония при его среднем значении 1 % по массе. Эти шлаки собирали, упаковывали и хранили до их химической переработки для извлечения плутония. Временное хранение шлаков, без разделения на «бедные» и «богатые», происходило в одном вытяжном шкафу. Масса плутония оценивалась в результате взвешивания шлака с учетом среднего содержания. Авария произошла при химическом растворении этих шлаков в реакторе опасной геометрии.
Ввиду отсутствия приборов контроля и непредставительности отбора проб, среднее значение содержания плутония в шлаках определяли по результатам анализа проб растворов уже после растворения шлаков. Таким образом, накапливали статистику по содержанию плутония в шлаках, определяли его среднее значение (1 %) и статистическое отклонение.
В большинстве емкостей содержалось менее 50 г плутония на 5000 г шлаков, но иногда из-за технологических отклонений содержание плутония могло значительно превышать 100 г. Все емкости, независимо от содержания в них плутония, хранились в одном и том же вытяжном шкафу, ожидая своей очереди на переработку. Загрузка рассчитывалась на основании статистических данных по содержанию плутония в отходах.
Первым этапом извлечения плутония было растворение шлаков в азотной кислоте. Обычно объединяли пять емкостей со шлаками и подавали их на растворение, по технологии нельзя было подавать на растворение больше 6 емкостей. В используемой для этого камере имелось два идентичных реактора-растворителя цилиндрической формы: реактор № 1 и № 2. Камера имела защиту из свинца толщиной 5 см и стали — 0,8 см. Геометрические параметры реакторов следующие: диаметр 0,45 м, высота 0,62 м, объем ~100 л. Каждый из реакторов был оснащен мешалкой, внешним нагревателем (водяная рубашка толщиной 6,0 см) и устройством отбора проб раствора с целью контроля его кислотности (рН) в процессе растворения. Реакторы закрывались сверху съемными крышками. Реагенты подавались по трубопроводам, а шлаки вручную. В процессе растворения партий шлаков необходимо было выдерживать определенную кислотность раствора, при этом нейтрализацию избыточной кислоты проводили добавкой новых порций шлаков.