Чтение онлайн

на главную - закладки

Жанры

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик
Шрифт:

Распознавание изображений: В задачах распознавания изображений, таких как определение объектов на фотографиях, классификация видов животных или распознавание лиц, алгоритмы классификации играют ключевую роль. Метрики, такие как Accuracy, Precision, Recall, F1-score, ROC AUC и Confusion Matrix, могут быть использованы для оценки производительности этих систем и определения областей для дальнейшего улучшения.

Классификация новостей: В задачах классификации новостей алгоритмы классификации используются для определения темы статьи,

источника информации или оценки достоверности новости. Метрики, такие как Accuracy, Precision, Recall, F1-score, ROC AUC и Confusion Matrix, могут быть использованы для оценки эффективности этих алгоритмов и улучшения качества анализа.

Для некоторых метрик качества модели для задач классификации возможно определить хорошие, средние и плохие значения. Однако для других, таких как Log Loss и Confusion Matrix, такие диапазоны не могут быть определены без контекста и масштаба данных. Тем не менее, я представлю таблицу значений для некоторых из метрик:

Для Log Loss и Confusion Matrix не существует фиксированных границ для хороших, средних и плохих значений, потому что они зависят от контекста и масштаба данных. Оценка Log Loss должна проводиться в сравнении с другими моделями на том же наборе данных, а Confusion Matrix должна быть анализирована для определения различных видов ошибок, которые допускает модель.

Важно учитывать, что эти диапазоны являются общими ориентирами и могут варьироваться в зависимости от конкретной области применения и задачи. Например, в критически важных областях, таких как медицинская диагностика, требуется более высокая точность и полнота, чем в менее критических сценариях, таких как рекомендации контента.

Метрика Accuracy (Точность)

Метрика Accuracy (Точность) является одной из наиболее базовых и понятных метрик для оценки качества работы алгоритма классификации. Она измеряет долю правильно классифицированных объектов относительно общего числа объектов в наборе данных.

Метрика Accuracy рассчитывается следующим образом:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

где:

TP (True Positives) – количество правильно классифицированных положительных объектов;

TN (True Negatives) – количество правильно классифицированных отрицательных объектов;

FP (False Positives) – количество неправильно классифицированных положительных объектов (ложные срабатывания);

FN (False Negatives) – количество неправильно классифицированных отрицательных объектов (пропущенные срабатывания).

Accuracy принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение Accuracy к 1 (или 100%), тем лучше работает алгоритм классификации.

Однако, стоит отметить, что метрика Accuracy не всегда является оптимальным выбором для оценки качества классификации, особенно если в наборе данных есть сильный дисбаланс

классов. В таких случаях использование других метрик, таких как Precision, Recall или F1-score, может быть более информативным и адекватным.

Пример № 1:

Пусть у нас есть 100 пациентов, из которых 90 здоровы, и 10 больны. Модель правильно классифицирует всех 90 здоровых пациентов и 10 больных пациентов. В этом случае:

TP (True Positives) = 10 (правильно классифицированные больные пациенты)

TN (True Negatives) = 90 (правильно классифицированные здоровые пациенты)

FP (False Positives) = 0 (нет ошибок при классификации здоровых пациентов)

FN (False Negatives) = 0 (нет ошибок при классификации больных пациентов)

Теперь рассчитаем Accuracy:

Accuracy = (TP + TN) / (TP + TN + FP + FN) = (10 + 90) / (10 + 90 + 0 + 0) = 100 / 100 = 1.0 или 100%

В данном примере точность модели составляет 100%.

Пример № 2:

В задаче классификации картинок с котами и собаками у нас есть 1000 картинок, и модель правильно классифицировала 900 из них. Допустим, 500 картинок изображают котов, а другие 500 – собак. Пусть модель правильно классифицировала 450 картинок с котами и 450 картинок с собаками. В этом случае:

TP (True Positives) = 450 (правильно классифицированные картинки с котами)

TN (True Negatives) = 450 (правильно классифицированные картинки с собаками)

FP (False Positives) = 50 (картинки с собаками, классифицированные как коты)

FN (False Negatives) = 50 (картинки с котами, классифицированные как собаки)

Теперь рассчитаем Accuracy:

Accuracy = (TP + TN) / (TP + TN + FP + FN) = (450 + 450) / (450 + 450 + 50 + 50) = 900 / 1000 = 0.9 или 90%

В данном примере точность модели составляет 90%.

Метрика Precision (Точность)

Метрика Precision (Точность) – это одна из метрик качества работы алгоритма классификации, которая показывает, насколько точно модель предсказывает положительный класс. Precision фокусируется на правильно классифицированных положительных объектах и ложных срабатываниях (ложноположительные результаты).

Метрика Precision рассчитывается следующим образом:

Precision = TP / (TP + FP)

где:

TP (True Positives) – количество правильно классифицированных положительных объектов;

FP (False Positives) – количество неправильно классифицированных положительных объектов (ложные срабатывания).

Precision принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение Precision к 1 (или 100%), тем точнее модель предсказывает положительный класс.

Важно отметить, что метрика Precision не учитывает ошибки второго рода, то есть пропущенные срабатывания (False Negatives). В некоторых ситуациях, особенно когда пропущенные срабатывания могут иметь серьезные последствия (например, в медицинской диагностике), лучше использовать другие метрики, такие как Recall (полнота) или F1-score, которые учитывают и ошибки первого, и второго рода.

Поделиться:
Популярные книги

Черный дембель. Часть 5

Федин Андрей Анатольевич
5. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 5

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Чужбина

Седой Василий
2. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чужбина

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Надуй щеки! Том 3

Вишневский Сергей Викторович
3. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 3

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»