Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

Отдельного внимания заслуживает история модели LLaMA (Large Language Model Meta AI, Большая языковая модель от Meta AI) от исследователей из компании Meta [2649] . Эта модель увидела свет в феврале 2023 г. и была представлена сразу в нескольких вариантах, насчитывавших от 7 до 65 млрд весов (размеры предыдущей большой модели от Meta AI под названием OPT [2650] , появившейся годом ранее, варьировались от 125 млн до 175 млрд параметров). Создатели модели сообщали, что версия модели с 13 млрд весов в большинстве тестов не уступала самой большой версии GPT-3 (175 млрд весов) и что самая большая версия LLaMA не уступает другим современными моделям, таким как PaLM и Chinchilla. На момент публикации LLaMA самые современные языковые модели были, как правило, либо недоступны широкой публике, либо доступ был возможен ограниченному числу пользователей через сильно лимитированные программные интерфейсы. Meta предоставила исследователям веса моделей LLaMA под некоммерческой лицензией, но уже в течение недели после выпуска модели её веса были выложены в открытый доступ анонимными пользователями. С этого момента количество моделей для инструктивной генерации в стиле ChatGPT, полученных путём дообучения LLaMA, начинает расти едва ли не в геометрической прогрессии, благодаря чему в сообществе исследователей появляется множество забавных локальных мемов. Вполне ожидаемо, что поначалу дообученные версии LLaMA получали имена в честь других животных рода лам (Alpaca [2651] , Vicuna [2652] , Guanaco [2653] ), но поскольку ламы быстро кончились, пришлось задействовать и других животных. Так появились, например, Koala [2654] , Gorilla [2655] и даже Orca [2656] и Stable Beluga [2657] .

2649

Touvron H., Lavril T., Izacard G., Martinet X., Lachaux M.-A., Lacroix T., Roziere B., Goyal N., Hambro E., Azhar F., Rodriguez A., Joulin A., Grave E., Lample G. (2023). LLaMA: Open and Efficient Foundation Language Models // https://arxiv.org/abs/2302.13971

2650

Zhang S., Roller S., Goyal N., Artetxe M., Chen M., Chen S., Dewan C., Diab M., Li X., Lin X. V., Mihaylov T., Ott M., Shleifer S., Shuster K., Simig D., Koura P. S., Sridhar A., Wang T., Zettlemoyer L. (2022). OPT: Open Pre-trained Transformer Language Models // https://arxiv.org/abs/2205.01068

2651

Taori R., Gulrajani I., Zhang T, Dubois Y., Li X., Guestrin C., Liang P., Hashimoto T. B. (2023). Stanford Alpaca: An Instruction-following LLaMA model // https://github.com/tatsu-lab/stanford_alpaca

2652

Vicuna Team (2023). Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality // https://lmsys.org/blog/2023-03-30-vicuna/

2653

Dettmers T., Pagnoni A., Holtzman A., Zettlemoyer L. (2023). QLoRA: Efficient Finetuning of Quantized LLMs // https://arxiv.org/abs/2305.14314

2654

Geng X., Gudibande A., Liu H., Wallace E., Abbeel P., Levine S., Song D. (2023). Koala: A Dialogue Model for Academic Research // https://bair.berkeley.edu/blog/2023/04/03/koala/

2655

Patil S. G., Zhang T., Wang X., Gonzalez J. E. (2023). Gorilla: Large Language Model Connected with Massive APIs // https://arxiv.org/abs/2305.15334

2656

Mukherjee S., Mitra A., Jawahar G., Agarwal s., Palangi H., Awadallah A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4 // https://arxiv.org/abs/2306.02707

2657

Stability AI (2023). Meet Stable Beluga 1 and Stable Beluga 2, Our Large and Mighty Instruction Fine-Tuned Language Models. // https://stability.ai/blog/stable-beluga-large-instruction-fine-tuned-models

В

июле 2023 г. свет увидела вторая версия модели (Llama 2), доступная сегодня в трёх вариантах: с 7, 13 и 70 млрд параметров [2658] .

Популярными альтернативами LLaMA при создании аналогов ChatGPT являются модели семейства MPT [2659] от компании MosaicML и уже упомянутая нами модель Falcon [2660] , [2661] от Института технологических инноваций (Technology Innovation Institute). Большой интерес с прикладной точки зрения представляют также модели Qwen от исследователей из Alibaba Cloud (7 млрд параметров, обучалась на 2,2 трлн токенов) [2662] , Baichuan 2 (две версии: 7 и 13 млрд параметров, обучались на 2,6 трлн токенов) [2663] , Mistral от стартапа Mistral AI (7 млрд параметров; обучалась на неизвестном наборе данных) [2664] , Persimmon от исследователей из компании Adept (8 млрд параметров, обучалась на 737 млрд токенов) [2665] и Yi [2666] от китайского стартапа 01.ai (6 и 34 млрд параметров, обучалась на 3 млрд токенов). Несмотря на небольшой размер, в ряде тестов они показывают весьма достойные результаты. Например, модель Mistral с 7 млрд параметров почти на 5 процентных пунктов (60,1% против 55,6%) обгоняет на наборе тестов MMLU версию модели LLaMA с 13 млрд параметров. Не менее впечатляющих результатов удалось добиться группе исследователей из компании Microsoft, разработавших модель phi-1.5 (новую версию модели phi-1) с 1,3 млрд параметров. При обучении модель прошла только 150 млрд токенов (5 проходов по датасету из всего лишь 30 млрд токенов, что очень мало по сравнению со многими другими языковыми моделями), однако благодаря тщательному отбору данных для предобучения phi-1.5 в ряде тестов обгоняет трансформерные модели с 7 и даже с 13 млрд параметров, что показывает исключительную важность использования качественных данных при разработке фундаментальных моделей. Создатели phi неслучайно озаглавили свои статьи «Всё, что нужно, — это учебники» [Textbooks Are All You Need] [2667] и «Всё, что нужно, — это учебники II: технический отчёт по модели phi-1.5» [Textbooks Are All You Need II: phi-1.5 technical report] [2668] .

2658

Anil R., Dai A. M., Firat O., Johnson M., Lepikhin D., Passos A., Shakeri S., Taropa E., Bailey P., Chen Z., Chu E., Clark J. H., Shafey L. E., Huang Y., Meier-Hellstern K., Mishra G., Moreira E., Omernick M., Robinson K., Ruder S., Tay Y., Xiao K., Xu Y., Zhang Y., Abrego G. H., Ahn J., Austin J., Barham P., Botha J., Bradbury J., Brahma S., Brooks K., Catasta M., Cheng Y., Cherry C., Choquette-Choo C. A., Chowdhery A., Crepy C., Dave S., Dehghani M., Dev S., Devlin J., Diaz M., Du N., Dyer E., Feinberg V., Feng F., Fienber V., Freitag M., Garcia X., Gehrmann S., Gonzalez L., Gur-Ari G., Hand S., Hashemi H., Hou L., Howland J., Hu A., Hui J., Hurwitz J., Isard M., Ittycheriah A., Jagielski M., Jia W., Kenealy K., Krikun M., Kudugunta S., Lan C., Lee K., Lee B., Li E., Li M., Li W., Li Y., Li J., Lim H., Lin H., Liu Z., Liu F., Maggioni M., Mahendru A., Maynez J., Misra V., Moussalem M., Nado Z., Nham J., Ni E., Nystrom A., Parrish A., Pellat M., Polacek M., Polozov A., Pope R., Qiao S., Reif E., Richter B., Riley P., Ros A. C., Roy A., Saeta B., Samuel R., Shelby R., Slone A., Smilkov D., So D. R., Sohn D., Tokumine S., Valter D., Vasudevan V., Vodrahalli K., Wang X., Wang P., Wang Z., Wang T., Wieting J., Wu Y., Xu K., Xu Y., Xue L., Yin P., Yu J., Zhang Q., Zheng S., Zheng C., Zhou W., Zhou D., Petrov S., Wu Y. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models // https://arxiv.org/abs/2307.09288

2659

The MosaicML NLP Team (2023). MPT-30B: Raising the bar for open-source foundation models // https://www.mosaicml.com/blog/mpt-30b

2660

Penedo G., Malartic Q., Hesslow D., Cojocaru R., Cappelli A., Alobeidli H., Pannier B., Almazrouei E., Launay J. (2023). The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only // https://arxiv.org/abs/2306.01116

2661

Almazrouei E., Alobeidli H., Alshamsi A., Cappelli A., Cojocaru R., Alhammadi M., Mazzotta D., Heslow D., Launay J., Malartic Q., Noune B., Pannier B., Penedo G. (2023). The Falcon Series of Language Models: Towards Open Frontier Models // https://huggingface.co/tiiuae/falcon-180B

2662

Qwen-7B (2023). // https://github.com/QwenLM/Qwen-7B/

2663

Yang A., Xiao B., Wang B., Zhang B., Bian C., Yin C., Lv C., Pan D., Wang D., Yan D., Yang F., Deng F., Wang F., Liu F., Ai G., Dong G., Zhao H., Xu H., Sun H., Zhang H., Liu H., Ji J., Xie J., Dai J., Fang K., Su L., Song L., Liu L., Ru L., Ma L., Wang M., Liu M., Lin M., Nie N., Guo P., Sun R., Zhang T., Li T., Li T., Cheng W., Chen W., Zeng X., Wang X., Chen X., Men X., Yu X., Pan X., Shen Y., Wang Y., Li Y., Jiang Y., Gao Y., Zhang Y., Zhou Z., Wu Z. (2023). Baichuan 2: Open Large-scale Language Models // https://arxiv.org/abs/2309.10305

2664

Mistral AI team (2023). Mistral 7B. The best 7B model to date, Apache 2.0 // mistral.ai, September 27, 2023 // https://mistral.ai/news/announcing-mistral-7b/

2665

Elsen E., Odena A., Nye M., Tas?rlar S., Dao T., Hawthorne C., Moparthi D., Somani A. (2023). Releasing Persimmon-8B / Adept, September 7, 2023 // https://www.adept.ai/blog/persimmon-8b

2666

Yi (2023). // https://github.com/01-ai/Yi

2667

Gunasekar S., Zhang Y., Aneja J., Mendes C. C. T., Giorno A. D., Gopi S., Javaheripi M., Kauffmann P., de Rosa G., Saarikivi O., Salim A., Shah S., Behl H. S., Wang X., Bubeck S., Eldan R., Kalai A. T., Lee Y. T., Li Y. (2022). Textbooks Are All You Need // https://arxiv.org/abs/2306.11644

2668

Li Y., Bubeck S., Eldan R., Giorno A. D., Gunasekar S., Lee Y. T. (2023). Textbooks Are All You Need II: phi-1.5 technical report // https://arxiv.org/abs/2309.05463

Впрочем, некоторые исследователи отнеслись к результатам коллег из Microsoft с недоверием. Через два дня после выхода работы, посвящённой phi-1.5, аспирант из Стэнфордского университета Райлан Шеффер выложил на arXiv пародийный препринт под названием «Предобучение на тестовом наборе — это всё,

что вам нужно» [Pretraining on the Test Set Is All You Need] [2669] , в котором рассказал о создании модели Phi-CTNL (читается как fictional, т. е. «вымышленный»). По словам автора, модель достигает 100%-ной точности на ряде публичных тестовых наборов задач благодаря... качеству данных! [2670] А именно — добавлению в обучающую выборку всех вопросов из публичных тестов, а также правильных ответов к ним! Таким образом Шеффер намекнул, что специально подготовленные обучающие данные моделей phi очень уж похожи на тесты, использованные для их оценки. Шеффер не был первым из специалистов в области машинного обучения, привлекших внимание к проблеме «протечки» [leakage] тестовых заданий в обучающие выборки фундаментальных моделей [2671] . Причём такого рода протечки обычно бывают неумышленными — такие задания могут оказаться в обучающей выборке в процессе автоматического сбора информации в Сети. Чтобы исключить подобное, в тестовые наборы данных часто включают какую-либо уникальную длинную последовательность символов, и если обученная модель «помнит» эту последовательность — это верный признак «протечки».

2669

Schaeffer R. (2023). Pretraining on the Test Set Is All You Need // https://arxiv.org/abs/2309.08632

2670

Schaeffer R. (2023). // https://twitter.com/RylanSchaeffer/status/1702346986329108703

2671

Riccio D. (2023). Five Hidden Causes of Data Leakage You Should Be Aware of / Towards Data Science, Apr 11, 2023 // https://towardsdatascience.com/five-hidden-causes-of-data-leakage-you-should-be-aware-of-e44df654f185

Впрочем, с самой идеей важности использования качественных данных для обучения фундаментальных моделей вряд ли кто-то может поспорить. Она подтверждается многочисленными экспериментами в области обучения современных LLM [2672] , [2673] . В последнее время исследователи уделяют большое внимание созданию качественных публичных датасетов для обучения больших языковых моделей, подобных, например, Slim Pajama [2674] и CulturaX [2675] .

2672

Tirumala K., Simig D., Aghajanyan A., Morcos A. S. (2023). D4: Improving LLM Pretraining via Document De-Duplication and Diversification // https://arxiv.org/abs/2308.12284

2673

Dai X., Hou J., Ma C., Tsai S., Wang J., Wang R., Zhang P., Vandenhende S., Wang X., Dubey A., Yu M., Kadian A., Radenovic F., Mahajan D., Li K., Zhao Y., Petrovic V., Singh M. K., Motwani S., Wen Y., Song Y., Sumbaly R., Ramanathan V., He Z., Vajda P., Parikh D. (2023). Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack // https://arxiv.org/abs/2309.15807

2674

Soboleva D., Al-Khateeb F., Myers R., Steeves J. R., Hestness J., Nolan D. (2023). SlimPajama: A 627B token cleaned and deduplicated version of RedPajama // https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama

2675

Nguyen T., Nguyen C. V., Lai V. D., Man H., Ngo N. T., Dernoncourt F., Rossi R. A., Nguyen T. H. (2023). CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages // https://arxiv.org/abs/2309.09400

Итак, рецепт изготовления вашего собственного аналога ChatGPT выглядит следующим образом:

1. Взять предобученную языковую модель. Это может быть LLaMA или, например, наша ruGPT-3.5 (если для вас важно, чтобы ответы модели на русском языке были более грамотными и точными).

На этом этапе модель уже очень много знает о мире, но пока ещё недостаточно хорошо умеет отвечать вам в правильной форме — то есть при помощи диалоговых реплик, содержащих по возможности наиболее полные решения поставленных перед моделью задач.

2. Выполнить процесс дообучения модели, который обычно называют SFT (Supervised fine-tuning, Дообучение с учителем). Это весьма ответственная задача, поскольку для её реализации требуется собрать очень качественный набор обучающих данных в инструктивной форме. Они могут выглядеть примерно так:

Вопрос: Дай ответ на главный вопрос жизни, Вселенной и всего такого.

Ответ: Ответ на главный вопрос жизни, Вселенной и всего такого был представлен в научно-фантастическом романе Дугласа Адамса «Автостопом по галактике». В книге суперкомпьютер по имени «Глубокий мыслитель» (Deep Thought) вычислил этот ответ, и он равен 42. Однако сам вопрос, на который отвечает число 42, так и остался неизвестным. Это стало источником юмора и символом парадокса в поиске смысла жизни и Вселенной.

Инструктивные данные не только задают форму ответов модели, настраивая её отвечать подобным образом, но и влияют на её «систему ценностей». Например, для того, чтобы модель не грубила в ответ на грубости пользователя, в инструктивный датасет специально добавляют примеры с вежливыми ответами на невежливые реплики пользователя. Задача разработки специализированного этического подмножества для инструктивного датасета — одна из важнейших задач при проектировании генеративной модели, предназначенной для массового применения. Некоторые ответы модели могут быть не такими уж и безобидными. Например, модель может дать некорректную медицинскую рекомендацию, что может обернуться вредом для здоровья беспечного пользователя. Поэтому важно составить детальную структуру рискованных тем и покрыть каждый из выявленных таксонов достаточно представительным набором примеров выверенных ответов. Вообще для того, чтобы инструктивные данные были максимально качественными, нужно обеспечить их тщательную проверку, в том числе с привлечением экспертов по различным областям человеческих знаний.

3. Обучить модель-оценщик. Обычно это отдельная классификационная модель, которая умеет предсказывать, какой из вариантов, сгенерированных языковой моделью, больше понравится пользователю. Чтобы обучить эту модель, нужна соответствующая разметка.

4. Финальное выравнивание. Теперь нужно пропускать через модель результаты генерации и обновлять её веса при помощи алгоритма оптимизации на базе аппроксимации политики (PPO) [2676] , [2677] , [2678] .

2676

*** В настоящее время исследователи активно изучают и другие формы обучения с подкреплением для языковых моделей, например прямую оптимизацию политики (Direct Policy Optimization, DPO) и даже обучение с обратной связью от ИИ (RL from AI Feedback, RLAIF).

2677

Rafailov R., Sharma A., Mitchell E., Ermon S., Manning C. D., Finn C. (2023). Direct Preference Optimization: Your Language Model is Secretly a Reward Model // https://arxiv.org/abs/2305.18290

2678

Bai Y., Kadavath S., Kundu S., Askell A., Kernion J., Jones A., Chen A., Goldie A., Mirhoseini A., McKinnon C., Chen C., Olsson C., Olah C., Hernandez D., Drain D., Ganguli D., Li D., Tran-Johnson E., Perez E., Kerr J., Mueller J., Ladish J., Landau J., Ndousse K., Lukosuite K., Lovitt L., Sellitto M., Elhage N., Schiefer N., Mercado N., DasSarma N., Lasenby R., Larson R., Ringer S., Johnston S., Kravec S., Showk S. E., Fort S., Lanham T., Telleen-Lawton T., Conerly T., Henighan T., Hume T., Bowman S. R., Hatfield-Dodds Z., Mann B., Amodei D., Joseph N., McCandlish S., Brown T., Kaplan J. (2022). Constitutional AI: Harmlessness from AI Feedback // https://arxiv.org/abs/2212.08073

Примерно таким образом были обучены модели, лежащие в основе сервиса GigaChat, запущенного для ограниченной аудитории 24 апреля 2023 г. GigaChat чем-то похож на дирижёра большого оркестра, с той лишь разницей, что управляет он не музыкантами, а нейросетями. Основу нейросетевого ансамбля составляют модели ruGPT-3.5 (в более поздних версиях — ruGPT-4) и Kandinsky 2.1 (в более поздних версиях — Kandinsky 2.2 и Kandinsky 3.0). Функцию генератора ответа берёт на себя сеть ruGPT, при этом ответы могут содержать динамические блоки, необходимые для вызовов других нейросетей и алгоритмов (например, калькулятора). Набор моделей, входящих в ансамбль, получил название NeONKA (NEural Omnimodal Network with Knowledge-Awareness, Нейронная омнимодальная сеть, базирующаяся на знаниях). Это название отсылает к «Сказке о Тройке» братьев Стругацких и описанной там эвристической машине «для отвечания на все вопросы». Её ушлый изобретатель утверждал, что секрет машины именно в мистической «неонке», благодаря которой «ротор поля наподобие дивергенции градуирует себя вдоль спина и там, внутре, обращает материю вопроса в спиритуальные электрические вихри, из коих и возникает синекдоха отвечания…». Правда, для работы машины нужен был сам изобретатель, который собственноручно печатал ответы на печатной машинке. Современная же нейросетевая NeONKA позволяет одновременно вести сотни тысяч диалогов, не прибегая к помощи человека. Таким образом, научно-технический прогресс превзошёл сегодня даже самые смелые ожидания фантастов.

GigaChat способен решать множество интеллектуальных задач: он отвечает на вопросы, поддерживает диалог, пишет программный код, создаёт тексты на самые разные темы и в разном стиле и даже рисует картины.

GigаChat является совместной разработкой команд SberDevices и Sber AI, в его создании также принимали участие сотрудники Института искусственного интеллекта (AIRI, Artificial Intelligence Research Institute), отраслевые эксперты и специалисты компании Cloud, обеспечивавшие строительство и эксплуатацию суперкомпьютера «Кристофари Нео» [2679] .

2679

Аверкиев С. (2023). Это не чат, это GigaChat. Русскоязычная ChatGPT от Сбера. / Хабр, 24 апр 2023 // https://habr.com/ru/companies/sberbank/articles/730108/

Поделиться:
Популярные книги

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Фронтовик

Поселягин Владимир Геннадьевич
3. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Фронтовик

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма

Тактик

Земляной Андрей Борисович
2. Офицер
Фантастика:
альтернативная история
7.70
рейтинг книги
Тактик

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Двойник Короля 2

Скабер Артемий
2. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля 2

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х