Чтение онлайн

на главную - закладки

Жанры

Онтология математического дискурса
Шрифт:

Можно рассмотреть два аспекта деятельности рефлектирующей способности суждения. С одной стороны - это создание теории. Гипотеза, обобщающая ряд фактов, представляет собой постулат, из которого эти факты получаются в виде его логических следствий. С другой стороны, такая гипотеза есть также результат конструирования. Последнее особенно ясно в примере с законом Кеплера: представление об эллиптической орбите очевидно требует работы способности воображения. Однако без воображения невозможно создать и эмпирические законы иного рода. В математическом естествознании эти законы всегда записываются в виде формул, т.е. в виде знаковых конструкций, создаваемым сообразно определенным правилам. Их построение представляет собой деятельность, которую Кант описал как символическое конструирование (B745). Но такого же рода конструирование представляет собой и вывод одних формул из других - а именно к этому сводится обоснование наблюдаемых фактов в рамках

теории. Следовательно деятельность рефлектирующей способности суждения можно рассмотреть как построение определенной структуры, для которой ранее установленные факты (т.е. ранее сконструированные объекты) являются элементами. (См. примечание 7)

Если в "Критике чистого разума" Кант рассматривает лишь способ синтеза суждений, то в "Критике способности суждения" речь идет о решении естественнонаучной проблемы. Оно (решение) состоит в том, чтобы представленные в виде бессвязного агрегата объекты были объединены в рамках целостной структуры. Именно в этой структуре каждый объект должен получить свое место и свое назначение. Поэтому здесь и реализуется принцип целесообразности. Очень важно иметь в виду, что действие способности суждения не является простым формулированием общего правила для ряда единичных объектов (или частных фактов). Нужно не просто сформулировать гипотезу, но сформулировать ее так, чтобы все требуемые факты выводились из нее как частные случаи. Эта процедура вывода должна предугадываться способностью суждения наряду с самим общим правилом. Иными словами способность суждения есть способность предвидеть структуру рассуждения как целого.

Едва ли, кстати, можно утверждать, что столь сложная работа сводится только к действию способности суждения. Очевидно, что наряду с ней здесь действуют и другие способности, а именно рассудок и воображение. Решение естественнонаучных проблем явно подразумевает ту "свободную игру" познавательных способностей, которую Кант связывал с принципом удовольствия (см. [28], c. 85)

Все сказанное мы, вслед за Кантом, отнесли к сфере исследования природы. Однако в той же мере это верно и для математики. Любая математическая задача представляет собой изложение фактов, никак, на первый взгляд, между собой не связанных. Решение задачи состоит в том, чтобы обнаружить и построить некоторую единую конструкцию, в которой все наличные факты получают свое место. Это особенно очевидно при решении геометрических задач, в которых необходимо дополнительное построение, приводящее к созданию более сложной конфигурации, из которой однако легко усматривается ответ на вопрос задачи. Но то же самое происходит и при решении любых задач, где в роли такой конфигурации выступает алгебраический вывод или более сложный математический текст, включающий как знаковые, так и графические элементы.

Уместность описанной гипотетико-дедуктивной процедуры при решении математических задач была довольно подробно описана Д. Пойа в [44] и [45]. На множестве примеров (как учебных, так и исторических) в этих книгах показывается, что важным моментом решения задачи является индуктивная догадка, обобщающая и связывающая воедино множество установленных ранее фактов. Едва ли многие математические теоремы появляются в результате чистого дедуктивного вывода из аксиоматически заданных посылок. Чаще они рождаются в виде догадок, необходимых для решения задачи (или ряда задач). С другой стороны, сколь бы частной ни была задача ее решение является чем-то вроде мини-теории, где ответ оказывается следствием из установленного в виде гипотезы постулата. Немаловажное отличие от естественнонаучной теории состоит в том, что сам этот частный постулат нуждается в доказательстве.

Все сказанное позволяет дополнить приведенное ранее определение существования. Математический объект существует постольку, поскольку сконструирован. Однако математика не есть простое конструирование объектов. Она представляет собой решение задач, а потому каждый объект появляется в ней в рамках более общей структуры, продуцируемой познавательными способностями для того, чтобы получить такое решение. Значит объект существует, поскольку встроен в такую структуру в виде ее элемента. Сама структура предстает как конструкция способности воображения и о ней также может быть поставлен вопрос - в рамках какой еще более общей структуры она существует. Разум не может представить, как налично реализованную, совокупность структур, последовательно включенных друг в друга в виде бесконечной конструкции. Поэтому вопрос о существовании требует для своего полного разрешения введения регулятивных понятий. В математике поэтому неизбежны представления о бесконечных совокупностях, в рамках которых существуют частные математические объекты. Для естествознания таким регулятивом выступает понятие о мире, в котором может быть реализовано сколь угодно много теоретических структур.

Необходимо, впрочем, иметь в виду, что в "Критике способности

суждения" нет речи о существовании, тем более о существовании математических объектов. Кантовское решение проблемы существования связано с рассмотрением категорий модальности, чем мы подробно займемся в Главе 3. Но сразу можно сказать, что это рассмотрение не будет полным без учета принципа целесообразности. С другой стороны, мы вплотную подошли к тому пониманию существования, которое связали в Введении с именем Кассирера. В рамках нашей интерпретации кантовского определения рефлектирующей способности суждения всякий объект считается существующим тогда, когда определено его место в некоторой структуре, разворачиваемой согласно установленному правилу (логической форме). Более того, теперь можно яснее сказать о какой структуре должна идти речь - это структура теории, создаваемой на основе индуктивной догадки и объясняющей ранее установленные факты. (См. примечание 8) Впрочем, предъявление структуры не является еще достаточным условием для утверждения о существовании элементов. Необходимо указать особые свойства такой структуры - ниже мы попытаемся разобрать, как решал эту проблему Гильберт.

Примечания к Главе 1

1. Интересный и весьма скрупулезный анализ роли математических образов в философском мышлении дан В.А.Шапошниковым в [60]. вернуться в текст

2. Латинский перевод аристотелевского термина ousia. вернуться в текст

3. Подробное рассмотрение философии математики Беркли предпринято в книге Джессефа [73]. Там, в частности, разбирается теория "репрезентантов" (термин Джессефа), развиваемая Беркли как альтернатива теории абстракции. Речь идет о намерении Беркли доказать, что в математике нет никаких общих понятий, абстрагированных от единичных предметов, а есть лишь те же самые единичные предметы (т.е. идеи), которые выступают в рассуждении как представители целых классов подобных им идей. вернуться в текст

4. Пустяковые трудности. вернуться в текст

5. Следуя терминологии Беркли, лучше было бы сказать "интерсубстанциональной". вернуться в текст

6. Объектом называется то, что представлено мышлению как нечто мыслимое, точнее представлено мыслящим субъектом самому себе. "Объект есть то, в понятии чего объединено многообразие данного наглядного представления" (B137; курсив Канта). Следовательно объект всегда представляет собой результат конструирования.Именно этого значения названного термина мы и будем придерживаться в дальнейшем. В "Критике чистого разума" наряду со словом "объект" (Objekt) используется и слово "предмет" (Gegenstand), для которого не дается более или менее ясного определения. По всей видимости "предметом" можно назвать и то, что не представляется как результат конструирования. Существует мнение ( [74], с. 268), что Кант не проводит никакого ясного различения между двумя названными терминами и пользуется ими как взаимозаменяемыми. Леппакоски замечает по этому поводу, что в английском переводе "Критики чистого разума" оба слова совершенно правомерно передаются одним и тем же термином "object". Тем не менее нам представляется, что если "объектом" можно назвать только нечто реально возможное, т.е. производимое продуктивной способность воображения, то термин предмет допускает более широкое использование. Например, "множество всех действительных чисел", которое невозможно сконструировать, допустимо называть предметом, но не объектом. вернуться в текст

7. Связь категорий объект и факт нуждается в дополнительном рассмотрении. Мы проведем его в Главе 3 при сопоставлении категорий действительности и необходимости. вернуться в текст

8. Причем факты могут служить для фальсификации теории. Последнее означает, что построенный при заданных посылках объект не может быть "вписан" в теоретическую структуру. На связь попперовской идеи фальсификации с "Критикой способности суждения" указано также в [33]. Впрочем, эта связь должна быть предметом особого исследования. Равно как и связь представлений Поппера о строении научной теории с развертыванием категории "действительности" у Кассирера ([32],c. 349-400). Оба эти мыслителя строят очень похожие конструкции, связывающие частные факты с общей гипотезой. вернуться в текст

ГЛАВА 2 Интерпретации существования в математике

1 Основные стратегии доказательства существования

Важной задачей, которую мы должны решить, проводя исследование онтологии математического дискурса, состоит в выяснении тех традиционных способов, которыми математика устанавливает существование своих предметов. Для этого следует обратить внимание на математические предложения, утверждающие о чем-либо, что оно "существует". Рассмотрение доказательств таких предложений позволяет понять, в каком смысле употреблено в нем это слово. Способ доказательства существования проясняет, прежде всего, интерпретацию существования в том или ином утверждении.

Поделиться:
Популярные книги

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Взводный

Берг Александр Анатольевич
5. Антиблицкриг
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Взводный

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Гридень. Начало

Гуров Валерий Александрович
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гридень. Начало

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Лэрн. На улицах

Кронос Александр
1. Лэрн
Фантастика:
фэнтези
5.40
рейтинг книги
Лэрн. На улицах

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Я уже князь. Книга XIX

Дрейк Сириус
19. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я уже князь. Книга XIX

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая