Чтение онлайн

на главную - закладки

Жанры

«OpenCV от NemtyrevAI» – Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода
Шрифт:

3. Группировка ячеек в блоки и нормализация гистограмм направленных градиентов для каждого блока.

4. Выделение признаков из нормализованных гистограмм направленных градиентов.

Иллюстрация 2.2:

Гистограммы

направленных градиентов характеризуют текстуру изображения и могут быть использованы для обнаружения объектов. Для классификации объектов используется алгоритм поддержки векторов машин (SVM), который обучается на наборе положительных и отрицательных примеров.

Метод HOG широко используется для обнаружения объектов, таких как пешеходы и машины, и он является одним из самых эффективных методов обнаружения объектов на сегодняшний день.

Модель деформируемых деталей (DPM) – популярный алгоритм обнаружения объектов, который был представлен Педро Фельценшвалбом, Россом Гиршиком, Дэвидом Макаллестером и Девой Рамананом в 2010 году. Алгоритм основан на модели деформируемых деталей, которая позволяет изменять форму объекта и поза.

Алгоритм DPM состоит из нескольких компонентов, включая экстрактор признаков, классификатор и модель деформируемых деталей. Экстрактор признаков отвечает за извлечение признаков из входного изображения, а классификатор используется для классификации этих признаков как принадлежащих объекту или. Фон Модель деформируемых частей используется для моделирования формы и положения объекта, позволяя изменять внешний вид объекта.

Алгоритм DPM сначала извлекает признаки из входного изображения с помощью средства извлечения признаков, такого как гистограмма ориентированных градиентов (HOG) или сверточная нейронная сеть (CNN). Эти признаки затем передаются через классификатор, который обучен различать. между объектом и фоновыми признаками Классификатор выводит оценку для каждого признака, указывающую вероятность того, что признак принадлежит объекту.

Модель деформируемых частей затем используется для моделирования формы и положения объекта. Модель состоит из набора частей, каждая из которых связана с определенным местоположением и ориентацией. Части соединены пружинами, которые позволяют изменять форму объекта. и поза Модель обучена минимизировать разницу между прогнозируемой формой объекта и фактической формой объекта, а также разницу между прогнозируемой и фактической позой объекта.

После обучения модели ее можно использовать для обнаружения объектов на новых изображениях. Алгоритм сначала извлекает признаки из входного изображения с помощью экстрактора признаков. Затем эти признаки передаются через классификатор, который выводит оценку для каждого признака. Модель деформируемых частей затем используется для объединения оценок отдельных элементов в оценку всего объекта. Алгоритм ищет объект с наивысшей оценкой на изображении и возвращает ограничивающую рамку и метку класса для этого объекта.

Алгоритм DPM использовался для достижения самых современных результатов в нескольких тестах обнаружения объектов, включая наборы данных PASCAL VOC и ILSVRC. Алгоритм также широко используется в практических приложениях, таких как автономное вождение, наблюдение и робототехника.

Пример того, как алгоритм DPM можно использовать для обнаружения объектов
на изображении:

import cv2

import numpy as np

from sklearn.externals import joblib

# Load the trained DPM model

model = joblib.load('dpm_model.pkl')

# Load the input image

img = cv2.imread('input.jpg')

# Convert the image to grayscale

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Detect objects in the image using the DPM algorithm

rects = model.detect(gray, threshold=0.5)

# Draw the bounding boxes around the detected objects

for rect in rects:

x, y, w, h = rect

cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

# Display the output image

cv2.imshow('Output', img)

cv2.waitKey(0)

cv2.destroyAllWindows

В этом примере мы сначала загружаем обученную модель DPM из файла. Затем загружаем входное изображение и преобразуем его в оттенки серого. Мы используем метод обнаружения модели для обнаружения объектов на изображении и рисуем ограничивающие рамки вокруг него. обнаруженные объекты с помощью функции прямоугольника из библиотеки OpenCV. Наконец, мы отображаем выходное изображение с помощью функции imshow из библиотеки OpenCV.

Обратите внимание, что параметр порога в методе обнаружения контролирует минимальный балл, необходимый для того, чтобы объект считался частью объекта. Регулируя этот параметр, мы можем контролировать компромисс между точностью и полнотой в алгоритме обнаружения объекта.

В целом, алгоритм DPM является мощным инструментом для обнаружения объектов на изображениях. Используя модель деформируемых деталей для моделирования формы и положения объекта, алгоритм способен обрабатывать изменения во внешнем виде объекта и достигать самых современных результатов в некоторых случаях. тесты обнаружения объектов.

Модель деформируемых объектов состоит из нескольких частей, каждая из которых характеризуется собственным набором признаков. Части могут быть деформированы и перемещены относительно друг друга, чтобы соответствовать вариациям в форме и расположении объекта.

Для обнаружения объекта на изображении используется алгоритм гребешковых меток (Latent SVM), который учитывает вариации в форме и расположении объекта. Алгоритм основан на использовании латентных переменных, которые представляют собой деформации и расположения частей объекта.

2.3: Пример модели деформируемых частей

Метод деформируемых частей широко используется для обнаружения объектов, таких как пешеходы и машины, и он является одним из самых эффективных методов обнаружения objects на сегодняшний день.

Основные шаги, необходимые для обучения и использования традиционных методов обнаружения объектов

В этом разделе мы опишем основные шаги, необходимые для обучения и использования традиционных методов обнаружения объектов.

Поделиться:
Популярные книги

Вдовье счастье

Брэйн Даниэль
1. Ваш выход, маэстро!
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Вдовье счастье

Господин следователь. Книга 3

Шалашов Евгений Васильевич
3. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 3

Законы Рода. Том 8

Андрей Мельник
8. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 8

Власть меча

Смит Уилбур
5. Кортни
Приключения:
исторические приключения
5.00
рейтинг книги
Власть меча

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Альда. Дилогия

Ищенко Геннадий Владимирович
Альда
Фантастика:
фэнтези
7.75
рейтинг книги
Альда. Дилогия

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Законы Рода. Том 9

Андрей Мельник
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила