Основы Социологии
Шрифт:
· Устойчивость - неустойчивость:
Ш Сложенный из листа бумаги самолётик-стрела - аэродинамически устойчив (т.е. сам возвращается к углам своей ориентации относительно вектора скорости набегающего потока воздуха), благодаря чему летит, в общем-то, по предсказуемой плавной траектории: при некоторой сноровке им можно попасть в заранее намеченное место.
Ш листья деревьев имеют иную форму и, опадая осенью с ветвей, иначе обтекаются потоком воздуха, летят по криволинейной ломано-прерывистой траектории и падают в непредсказуемое место (это хорошо видно в безветренное время).
· Запас устойчивости:
Ш Бумажный самолётик-стрела, если его просто
В отличие от бумажного самолётика-стрелы, история авиации знает примеры реальных самолётов, аэродинамические компоновки которых оказывались таковы, что, если в полёте угол атаки
[187] (или крена) превысит некоторое критическое значение, то самолёт начнёт падать почти так, как падает осенний лист (это явление называется в авиации «плоский штопор»
[188]).
Критический угол атаки, по превышении которого самолёт сваливается в плоский штопор либо в пикирование, для выхода из которых требуется управление
[189], - одна из возможных мер запаса устойчивости режима нормального полёта.
Ш При опрокидывании предмета, стоящего на твёрдой поверхности (например, табуретки), он теряет устойчивость, когда момент сил (тяжести и равнодействующей реакций опоры) изменяет свой знак, после чего момент названных сил начинает способствовать дальнейшему опрокидыванию предмета даже в случае исчезновения накренившей предмет силы. Одна из возможных мер запаса устойчивости в этом случае - механическая работа, которую необходимо совершить для того, чтобы привести предмет в положение, в котором момент сил тяжести и равнодействующей реакций опоры изменяет свой знак.
Однако в теории и практике управления применимость приведённого выше определения устойчивости носит ограниченный характер. Дело в том, что жизни встречаются объекты и процессы, которые сами по себе свойством устойчивости не обладают (т.е. обладают нулевым запасом устойчивости); либо их запас устойчивости настолько близок к нулю, что в практических задачах его можно считать нулевым, а сами объекты (процессы) - неустойчивыми, но при этом:
Организация соответствующего управления может придать устойчивость течению процессов, которые без управления (или при несоответствующем управлении) оказываются неустойчивыми.
Наиболее широко известным примером такого рода организации соответствующего управления, придающего устойчивость заведомо неустойчивому процессу, является вся история конструирования и строительства вертолётов одновинтовой схемы
[190].
Дело в том, что, если вращающийся винт перемещается в направлении, перпендикулярном оси своего вращения, то воздушный поток с разными скоростями набегает на лопасти винта. Вследствие этого на лопастях винта (если углы атаки лопастей одинаковые) возникают разные по величине аэродинамические силы, которые порождают кренящий момент. По этой причине вертолёт с таким несущим винтом во время полёта обречён завалиться на один из бортов и после этого, потеряв подъёмную силу, «упасть камнем»; практически же он вообще оказался бы не способен взлететь. В терминах теории управления это означает, что желательный режим функционирования устройства объективно неустойчив.
Для того чтобы вертолёт одновинтовой схемы мог летать, требуется обнулить кренящий момент. Наиболее эффективный способ достичь этого - изменять угол атаки лопастей несущего винта в процессе его вращения так, чтобы лопасть, перемещающаяся в направлении полёта, имела меньший угол атаки, нежели лопасть, перемещающаяся в направлении, обратном направлению полёта: в этом случае там, где скорость набегающего на лопасть потока выше, - угол атаки лопасти ниже и возникает подъёмная сила меньшей величины; а там, где скорость набегающего на лопасть потока ниже, - угол атаки лопасти выше и возникает подъёмная сила большей величины; вследствие этого при определённом соотношении углов атаки при прохождении лопастями несущего винта разных секторов ометаемого ими круга - можно управлять величиной кренящего момента и направлением его действия (последнее позволяет вертолёту лететь вперёд или боком, зависать на месте и т.п.).
Задача управления углами атаки лопастей при вращении несущего винта вертолёта была решена инженером Борисом Николаевичем Юрьевым (1889 - 1957). В 1911 г. он опубликовал статью, в которой описал схему одновинтового вертолёта с рулевым винтом и автоматом перекоса лопастей несущего винта. Изобретение им «автомата перекоса» - устройства, обеспечивающего управление изменением угла атаки лопастей несущего винта при его вращении, - открыло пути к тому, что вертолёт одновинтовой схемы с управляющим винтом на хвостовой балке стал реальностью. И ныне именно эта схема вертолёта получила наиболее широкое распространение благодаря своей простоте, надёжности и превосходству по весовой отдаче
[191] в сопоставлении её с другими схемами.
Есть и другие примеры, когда организация соответствующего управления придаёт устойчивость процессу, объективно неустойчивому в отсутствии управления или неустойчивому при не соответствующем управлении.
Приведённый пример показывает, что явление «устойчивость» в традиционном понимании этого термина - частный случай более общего явления: устойчивости в смысле предсказуемости поведения объекта в определённой мере под воздействием внешней среды, собственных изменений объекта, управления, - поскольку в основе организации такого рода соответствующего управления неустойчивыми процессами (объектами) лежит именно решение задачи о предсказуемости поведения объекта в указанном смысле.