Осязание. Чувство, которое делает нас людьми
Шрифт:
Рисунок на пальцах имеется не только у людей: он есть и у горилл и шимпанзе. Да и не у одних приматов, а у самых неожиданных групп других млекопитающих. В Австралии, например, он есть у коалы, но отсутствует и у их близкого родственника – волосатоносого вомбата, и у другого обитателя крон – древесного кенгуру. [27] Он есть у куниц-рыболовов, живущих в Северной Америке, но не наблюдается у их близких родственников из семейства куньих. На данный момент мы не вполне уверены, что наличие папиллярного рисунка у конкретных видов как-то связано с их способностью к захвату. При всей их символической значимости мы все еще не знаем, зачем нужны отпечатки пальцев.
27
См. в: Henneberg M. J., Lambert K. M., Leigh C. M. Fingerprint homoplasy: koalas and humans // NaturalScience 1, article 4 (1997). Те же авторы утверждают, что узор, подобный отпечаткам пальцев, наблюдается на хватательных хвостах у некоторых видов млекопитающих.
Я до сих пор помню, как мама в детстве говорила мне: «Вылезай из ванны, а то будешь как чернослив!» Многие считают, что морщинки на пальцах рук и ног, которые образуются от длительного контакта с водой, – результат пассивного процесса, при котором вода постепенно впитывается отмершими клетками рогового слоя эпидермиса. Но еще в 1936 году было доказано, что это не так. Ключевым наблюдением в изучении этого феномена стало то, что сморщивания кожи на подушечках пальцев
28
Интересно, что гладкая кожа без симпатически контролируемых потовых желез (например, на пенисе и клиторе) при намокании не сморщивается.
Так в чем же смысл сморщивания, если, конечно, он есть вообще? Марк Чангизи и его коллеги из 2AI Labs предполагают, что морщинки на пальцах, как и папиллярные узоры, служат чем-то вроде дождевых протекторов, увеличивая сцепление с влажной поверхностью. Они отмечают, что реакция сморщивания кожи известна также у макак и шимпанзе, и считают, что это может быть результатом адаптации приматов к влажной скользкой среде. [29] Подкрепляют эту гипотезу результаты исследования Кириакоса Карекласа и его коллег из Университета Ньюкасла, показавшие, что люди со сморщенными подушечками пальцев гораздо быстрее перемещали мокрые кирпичи из одного контейнера в другой, чем люди с более гладкими подушечками. При этом никакого преимущества при перетаскивании сухих кирпичей сморщенные подушечки не давали.
29
Их гипотеза поддерживается следующим наблюдением: определенные рисунки бороздок и ложбинок на мокрых пальцах рук и ног хорошо выполняют дренажную функцию и копируют естественный дренаж горных склонов, хотя, разумеется, в гораздо меньшем масштабе.
Как распределены по коже специализированные рецепторы осязания и как это распределение влияет на наши осязательные ощущения? Этот вопрос оказался довольно сложным. Чтобы разобраться в нем, давайте возьмем какую-нибудь повседневную задачу и разобьем ее на крошечные этапы. Допустим, вы опаздываете в кино и с радостью обнаруживаете парковочное место на переполненной стоянке рядом с кинотеатром. Подойдя к допотомному механическому паркомату, вы обнаруживаете, что он принимает только четвертаки. Запустив руку в карман с монетами и прочей мелочью, вы ощупью ищете там четвертак, вынимаете его и опускаете в прорезь автомата. После этого вы беретесь за ручку и поворачиваете ее. При этом вы с удовлетворением ощущаете, как срабатывает храповой механизм, вибрации от падения четвертака с характерным звуком и, наконец, силу, с которой ручка вертится в обратную сторону, принимая исходное положение.
Такое прозаическое действие мы выполняем практически машинально, почти не прилагая умственных усилий, и тем не менее мы способны заткнуть здесь за пояс самых изощренных современных роботов, окажись они в подобной ситуации. Это свидетельствует о том, что даже самые простые задачи с участием осязания требуют обработки огромного потока информации (а также знаний об устройстве нашего организма и внешнего мира). Скармливая монетку парковочному автомату, мы задействуем четыре основных типа осязательных рецепторов и соответствующих им нервных волокон в гладкой коже кончиков пальцев (рис. 2.3).
Начав копаться в кармане брюк (или в кошельке, или в рюкзаке) в поисках четвертака и пытаясь определить его исключительно на ощупь, вы обнаруживаете флешку, две слипшиеся таблетки ибупрофена, десятицентовик, пару центовых монеток и пятицентовик, пока наконец не понимаете по размеру и текстуре монеты (рельефу аверса и реверса и ребристому краю), что нащупали нужную. При этом активно работают все четыре типа осязательных рецепторов на коже, но главным из них – тем, который помогает определить края предметов, их кривизну и грубую текстуру, – будет так называемая осязательная клетка Меркеля. Она названа в честь немецкого анатома Фридриха Меркеля, который впервые описал ее в 1875 году и назвал Tastzelle, буквально «осязательная клетка». Эти специализированные клетки эпидермиса объединяются в диски по нескольку клеток в каждом. Диски находятся на вершинах первичных эпидермальных сосочков, на границе эпидермиса и дермы (рис. 2.3). Диск Меркеля контактирует с единственным нервным волокном, которое передает информацию от него к спинному мозгу, откуда она поступает в отдел головного мозга, отвечающий за осязание. Информация, передаваемая посредством изменения электрического потенциала, кодируется кратковременными изменениями напряжения, которые длятся всего около тысячной доли секунды и называются скачками. [30] Уже давно стоит вопрос о том, как механическая энергия деформации кожи преобразуется в нервном окончании в электрический сигнал. Пока лучшая гипотеза такова: это происходит благодаря молекулам в мембране нервного окончания (так называемым ионным каналам), активируемым растяжением.
30
Электрические разряды (также именуемые потенциалами действия) – основное средство передачи данных на дальнее расстояние почти для всех нейронов, а не только для тех, которые отвечают за распространение информации от кожи к спинному и головному мозгу. Разность потенциалов по отношению к внешним мембранам у большинства нейронов в состоянии покоя составляет около –70 милливольт. Когда нейрон деполяризуется до уровня примерно –55 милливольт, открываются потенциалочувствительные ионные каналы, через которые устремляются ионы натрия. Поскольку эти ионы заряжены положительно, их вторжение в нейрон приводит к дальнейшей деполяризации – открываются новые ионные каналы, формируется цепь положительной обратной связи, сигнал быстро усиливается. Примерно через миллисекунду открываются потенциалочувствительные калиевые каналы, а натриевые закрываются. Ионы калия выходят, способствуя затуханию сигнала. Важно отметить, что сигналы могут распространяться от одного участка мембраны к другому, как пламя по бикфордову шнуру. Вот так сигналы и проходят по нервным волокнам от кожи в спинной мозг, а затем и в головной.
Рис. 2.3. В гладкой коже находятся четыре типа рецепторов механических стимулов. Диски Меркеля расположены в самой глубокой части эпидермиса, где он граничит с дермой, – на вершинах первичных эпидермальных сосочков. Чувствительные тельца Мейснера находятся в верхней части дермы, в ложбинках между вершинами эпидермальных сосочков, а пачиниевы тельца и окончания Руффини залегают глубже в дерме. Нервные окончания, получающие сигналы от телец Мейснера и Пачини, отправляют кратковременные электрические сигналы в мозг – только в начале и в конце прикосновения, а те окончания, которые работают с тельцами Руффини и клетками Меркеля, посылают устойчивый сигнал в течение всего осязательного контакта. Здесь также показаны свободные нервные окончания, которые воспринимают определенные химические соединения, температуру, боль и зуд. О них речь пойдет в следующих главах
Эти молекулы образуют пору, которая в состоянии покоя закрыта, но открывается при растяжении клеточной мембраны, впуская в нервную клетку положительные ионы натрия и кальция и тем самым генерируя скачок напряжения. [31]
Дисков
31
Нужно отметить, что существует несколько различных групп ионных каналов, активируемых растяжением, и они присутствуют во многих типах клеток – от лейкоцитов до почечных клеток. В нервной системе эти ионные каналы также играют важную роль в клетках волосков внутреннего уха, где помогают преобразовывать механическую энергию звуковых волн в электрические сигналы, направляемые в мозг. Молекулярная природа ионных каналов, активируемых растяжением, пока не вполне ясна. В настоящее время лучшие кандидаты на роль ответственных за восприятие – белки пьезо-1 и пьезо-2.
32
Хотя Меркель назвал открытые клетки Tastzellen, споры о том, действительно ли они являются осязательными рецепторами, не утихали много лет – точнее, 124 года. В 2009 году Худа Зогби с коллегами наконец-то доказала это, выведя при помощи генной инженерии мышей без клеток Меркеля. Записи с нервных волокон таких мышей показали отсутствие характерной реакции на легкие прикосновения. Порой наука требует изрядного терпения. Некоторые важные вопросы остаются без ответа до сих пор: где именно сила растяжения кожи преобразуется в электрический сигнал? В клетках Меркеля, в связанных с ними нервных волокнах или и там, и там? Если клетки Меркеля удалить генетическим способом, электрической реакции в осязательных нервных волокнах не происходит, но объяснений этому может быть несколько:
а) клетки Меркеля участвуют в механической передаче силы растяжения кожи на мембраны нервных волокон, где при помощи пьезобелков и формируемых ими пьезоканалов она трансформируется в электрические сигналы. При удалении клеток Меркеля отклика от нервных волокон не поступает, потому что их окончания не подвергаются должному механическому возбуждению;
б) клетки Меркеля преобразуют механическую силу в электрические сигналы, а затем испускают химический сигнал (нейромедиатор), который генерирует электрический импульс в нервных окончаниях;
в) когда клетки Меркеля генетическим способом удаляются у мышей-мутантов, побочные эффекты развития не дают нервным волокнам преобразовывать силу в электрические сигналы, хотя у нормальных мышей все происходит именно так (как, вероятно, и у людей).
Пока эта книга готовилась к печати, поступил новый отчет, проливающий свет на эту интересную проблему. Методом генной инженерии были получены мыши, у которых ионный канал пьезо-2, активируемый растяжением, был удален из клеток кожи (в том числе клеток Меркеля), но не из сенсорных нервов. У этих мышей в клетках Меркеля отсутствовал производимый осязанием электрический ток, при этом чувствительность гладкой кожи к тонкой механической стимуляции снизилась, но не исчезла совсем. Это предполагает наличие двусторонней модели переноса механической энергии как клетками Меркеля, так и сенсорными нервами, то есть своего рода гибрид моделей а) и б), приведенных выше.
33
Этот метод требует от экспериментатора большого искусства, а от участника эксперимента – недюжинного терпения. Требуется вручную ввести в руку очень тонкий электрод (диаметр кончика – 0,01 мм), тщательно отыскав одиночное тактильное нервное волокно, исходящее из руки, для записи сигналов и, в некоторых случаях, для стимуляции этого волокна. Такие эксперименты могут длиться часами. Отметим, что стимуляция одиночных механосенсорных нервных волокон способна вызвать четкие осязательные ощущения и активировать определенные участки мозга, что видно при картографировании мозга и ЭЭГ.
Диски Меркеля позволяют нам кончиками пальцев различать отдельные признаки поверхностей – например, грубые насечки на ребре четвертака. Следует отметить, что способность дисков Меркеля передавать осязательные характеристики объясняется их структурой, расположением и связями. Поскольку клетки Меркеля находятся в довольно близком к поверхности слое кожи, они реагируют на мельчайшие изменения этой поверхности. А поскольку в кончиках пальцев этих клеток огромное количество и каждая связана с собственным нервным волокном, такой спектр рецепторов может сообщить о различии поверхностей объектов, даже если разница между ними составляет всего 0,7 миллиметра. [34]
34
Хотя в каждом окончании Меркеля имеется единственный сенсорный аксон, один этот аксон может отвечать за 10–50 дисков, расположенных в зоне от 1 до 3 мм. То, что диски Меркеля могут слабо реагировать на небольшие растяжения и сильно – на серьезные (и эта зависимость линейна), не удивляет, но этот факт оказывается принципиально важным для восприятия кривизны объектов – например, помогает отличить ребро цента от ребра пятицентовой монеты. Если увеличить и рассмотреть зону контакта кончика вашего пальца с центом, мы увидим, что кожа натягивается сильнее всего в центре, а по направлению к краям степень растяжения снижается. Конечно, скорость снижения растяжения кожи будет пропорциональна кривизне объекта – меньше для десятицентовика и больше для цента. Плотный слой нервных окончаний дисков Меркеля выдает точную информацию об уровне растяжения, а затем эта информация передается в головной мозг, который и оценивает приблизительную кривизну объектов.
Итак, вы распознали четвертак. Вы зажимаете его между большим и указательным пальцами и начинаете вынимать его из кармана, а затем подносите к прорези автомата. Как определить силу, приложенную вами при этом зажимающем движении? Вы едва ли собираетесь применять максимальную силу, рискуя сломать себе кости при захвате всего подряд: возможно, четвертак и не пострадает, а вот с яйцом или детской ладошкой могут возникнуть проблемы. Но и слишком малая сила не подойдет: четвертак просто выскользнет из пальцев. В идеале неплохо было бы применить минимально необходимую для удержания четвертака силу. В этой задаче вы полагаетесь в основном на другой кожный рецептор, именуемый тельцем Мейснера (рис. 2.3). Как и диски Меркеля, тельца Мейснера расположены на границе дермы и эпидермиса. [35] Они находятся в дерме, в бороздках между сосочками, где эпидермис тоньше всего. Каждое тельце Мейснера состоит из уложенных в спираль нервных окончаний, переплетенных со слоями ненейронных клеток – так называемых шванновских. Вместе они образуют луковичную замкнутую структуру – тельце, которое присоединено к близлежащим клеткам кожи структурными нитями, состоящими из белка коллагена. Тельца Мейснера физически деформируются при натягивании этих нитей, когда кожа растягивается, и возвращаются в исходное состояние, когда растягивающий объект удаляется.
35
Если вы начали подозревать, что немецким анатомам XIX столетия принадлежит выдающаяся роль в описании клеточной структуры, то вы правы. Тельце Мейснера было открыто Георгом Мейснером и его учителем Рудольфом Вагнером из Геттингенского университета и описано в публикации 1852 года. На следующий год Мейснер снова опубликовал работу об этих структурах, на сей раз не упомянув Вагнера в числе авторов. Последовал спор о первенстве, который так и не разрешился до самой смерти Вагнера в 1864 году.