Чтение онлайн

на главную - закладки

Жанры

Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:

Эта ситуация очень наглядно проявляется в процессах множественного рождения адронов при высоких энергиях. В актах соударения рождение какого-то количества новых адронов примерно в 4 раза более вероятно, чем упругое рассеяние исходных адронов. Поэтому двухчастичная задача о межадронных взаимодействиях оказывается резко незамкнутой, и, судя по всему, ее не удается свести к рассмотрению парных взаимодействий не только на адронном, но и на кварк-глюонном уровне.

Адрон - неточечная частица, и его рождение нельзя описать как мгновенный акт, происходящий в единственной точке пространства. Скорее речь идет о довольно сложной пространственно-временной эволюции в областях с размером порядка 10-13 см и временных интервалах порядка 10-23

с, когда в начале имеется своеобразный адронный ген (скажем, кварк-антикварковая пара), а в конце - вполне сформировавшийся адрон (скажем, ?-мезон с нормальной виртуальной шубой).

Самое любопытное в множественном рождении - коллективный характер формирования шуб у отдельных частиц. Экспериментально это проявляется в том, что большинство образующихся адронов сильно коррелированны друг с другом, словно их появление взаимообусловлено, и они "помнят" о своем происхождении из единого котла. Можно надеяться, что в структуре рождающихся таким образом адронов запечатан их генезис в области взаимодействия - от кварк-партонного зародыша до полноценной частицы. Но квантовая хромодинамика пока не способна восстановить многие важные детали этой картины (и, между прочим, не объясняет сильных корреляций). Эволюция комка кварк-глюонного вещества и формирование в нем сложных адронных структур - те задачи, которые могут потребовать серьезных преобразований всей квантовополевой схемы фундаментальных взаимодействий.

Гравитация. О гравитационном взаимодействии элементарных частиц мы знаем удивительно мало. По сути, проявления силы тяготения непосредственно между парой частиц, например, протонов, никогда не наблюдались. Беда в том, что из-за фантастической малости гравитационной константы связи (?гр = Gmp2/ hc ( 5,9.10-39 эти силы в любом столкновении частиц легко забиваются другими более интенсивными взаимодействиями. Но такое положение не должно казаться непреодолимым барьером в изучении гравитационных задач микромира. Строго говоря, гравитационный заряд пропорционален не массе покоя частицы, а ее полной энергии, так что при столкновении планковских пучков (Е ~ ЕP ~ 1028 эВ) гравитация должна стать сильным взаимодействием.

На сегодняшний день известно, что такие элементарные частицы, как фотоны и нейтроны, ведут себя в поле крупных космических тел вполне удовлетворительно, то есть отклоняются в соответствии с предсказаниями классической теории тяготения. Астрофизические модели дают хорошие косвенные свидетельства того, что поведение других частиц тоже не противоречит выводам классической теории.

По сути же, современная теория гравитации относится к макроскопическим телам, системам огромного числа элементарных частиц (в типичной звезде порядка N ~ (mP/mp)3 ~ 7,8.1056 нуклонов). С ньютоновских времен и до первых десятилетий 20 века тяготение рассматривалось как одна из фундаментальных сил природы, и ее особая роль по сравнению, скажем, с кулоновской силой сводилась к простому различию: первая действует между всеми массивными телами, а вторая только между электрически заряженными.

Развитие эйнштейновской теории относительности продемонстрировало глубокую эквивалентность между массой и энергией, стало ясно, что гравитация - универсальное явление, в гравитационных взаимодействиях должны участвовать все виды материи, обладающие энергией и импульсом. В 1916 году Альберт Эйнштейн сформулировал изумительно красивую гипотезу о том, что ввиду универсальности гравитации имеет смысл рассматривать движение материи не в особом силовом поле, а в неевклидовом пространстве-времени, геометрические свойства которого целиком определяются состоянием свободно движущейся материи.

В обычном евклидовом пространстве свободная частица всегда движется по прямой с постоянной скоростью или покоится. В случае более сложной геометрии свободному движению (или, как говорят, движению по геодезической) могут соответствовать очень сложные

траектории. Тяготеющий центр может искривлять пространство, обеспечивая, например, эллиптическое движение частицы, и при достаточно больших расстояниях (r " 2GM/c2) и малых скоростях (v " c) картина будет соответствовать движению планеты в поле ньютоновского силового центра.

Эйнштейновская теория гравитации (часто называемая общей теорией относительности) получила хорошие экспериментальные подтверждения и составила основу современной космологии и релятивистской астрофизики. Но она соответствует усредненному описанию вещества, и ее экстраполяции на уровень квантовомеханических систем отнюдь не проста. К сожалению, нашему эксперименту пока не доступны объекты, которые могли бы сыграть роль мостика между классической и квантовой гравитацией - нечто вроде атома водорода в электродинамике. Тем более трудно пока обсуждать микроскопическую модель гравитационного взаимодействия - будет ли она соответствовать современному квантовополевому идеалу (обмен гравитонами и т. п.) или потребует чего-то необычного.

На фоне всех этих развитых теорий, имеющих широкий круг экспериментальных подтверждений, существует явление, которое, по-видимому, должно объясняться особым типом сверхслабого взаимодействия. Речь идет о необычном распаде так называемого долгоживущего нейтрального K-мезона на пару ?-мезонов (KL0 ( ?+?- или KL0 ( ?0?0). Это явление обнаруженное в 1964 году, связано с нарушением СР-инвариантности, которая, как казалось ранее, должна выполняться во всех моделях*. Регистрируемый эффект находится на уровне не более одной тысячной от обычных эффектов слабых взаимодействий, откуда и берется название гипотетических новых сил. Пока исследованы они очень ограниченно, экспериментально не обнаружено ни одного случая их проявления в процессах, отличных от KL0-распадов. Однако и этого достаточно, чтобы оценить исключительную важность открытия. Из-за нарушения СР-четности KL0 с несколько большей вероятностью распадается с вылетом позитрона (KL0 ( e+?e?
– , чем электрона (KL0 ( e-?e?+), и такая же ситуация имеет место в распадах с вылетом ?+-. Это фиксирует абсолютную разницу между частицами и античастицами - античастицы уже не выступают зеркальными двойниками частиц. Возможно, проблема сверхслабых взаимодействий тесно связана с загадкой зарядовой асимметрии наблюдаемого участка Вселенной, где вещество резко преобладает над антивеществом.

* С - это операция перехода к зарядам противоположного знака, Р операция зеркального отражения, Т - операция обращения хода времени. Согласно так называемой СРТ-теореме, всякая нормальная теория поля должна оставлять неизменными наблюдаемые величины при одновременном применении всех трех операций. Однако долгое время думали, что эти операции сохраняют наблюдаемые неизменными (инвариантными) и по отдельности. Потом выяснилось, что в слабых взаимодействиях Р-четность не сохраняется, но оставалась надежда на соблюдение СР-четности (комбинированной С- и Р-операций). Теперь идеи такого рода принадлежат истории науки.

В физике частиц и их взаимодействий очень важную роль играет вакуум элементарных частиц (или физический вакуум, по-латыни vacuum - пустота). Это особое состояние материи, в котором отсутствуют реальные частицы и энергия минимальна. Однако с точки зрения квантовой теории, в вакууме непрерывно рождаются и очень быстро гибнут виртуальные частицы - в соответствии с соотношениями неопределенностей. В этом смысле физический вакуум обладает сложной структурой и оказывает наблюдаемое влияние на процессы взаимодействия реальных элементарных частиц. Внешние поля (в частности, гравитационное) могут сообщить вакууму достаточную энергию, и в результате начнется процесс рождения реальных частиц, например, электрон-позитронных пар. Такого типа процессы должны играть особенно большую роль на ранних космологических стадиях и в окрестностях черных дыр.

Поделиться:
Популярные книги

Девочка-лед

Джолос Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-лед

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Брак по принуждению

Кроу Лана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Брак по принуждению

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Страж Кодекса. Книга V

Романов Илья Николаевич
5. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга V

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи