Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:
Отложив более подробную дискуссию на эту интригующую тему до следующей части, попробуем посмотреть на антропогенный принцип в несколько фантастической проекции.
Если фундаментальные и другие константы из минимального набора действительно выбирать из антропогенных соображений, то не следует ли отсюда, что появление человека - во всяком случае, разума нашего типа как-то запрограммировано во Вселенной? Не развиваются ли с самого начала некоторые параллельные нашему миры, где с определенными вероятностями реализуются иные наборы фундаментальных констант и, уж конечно, принципиально иные формы жизни и разума? И в какой степени мы могли бы подойти к их экспериментальному изучению - в принципе
Все эти вопросы - призыв к неблизкому будущему. Поскольку балансировать на грани фантастики никому еще долго не удавалось, попробуем сознательно отступить в более реалистические области, чтобы ощутить под ногами желанную почву фактов.
ЧАСТЬ II: КОСМОЛОГИЧЕСКИЙ СЦЕНАРИЙ
ГЛАВА 9: ЦЕПОЧКА КОСМИЧЕСКИХ РЕАКТОРОВ
Но мирозданию недоставало человека;
Земля и вся природа скорбели одна,
оттого, что нет ее царя,
другая оттого, что нет ее супруга
Алоизиюс Бертран
КОСМОГОНИЧЕСКАЯ ФАЗА
Мы как-то незаметно углубились в сферы космической экзотики и покинули Вселенную на весьма любопытной стадии формирования макроскопических объектов - на рубеже космологических и космогонических проблем.
Что же происходит дальше? Как формируются крупные космические структуры - галактики и звезды? Почему в среде, состоящей из водорода, гелия, фотонов и нейтрино, возникают тяжелые элементы, сложные молекулы и, наконец, жизнь и мыслящие существа?
Когда мы говорили об однородности и изотропии ранней Вселенной, имелось в виду описание ее свойств в среднем, в масштабах существенно превышающих размеры возможных неоднородностей. Небольшие возмущения однородного фона Вселенной начинают развиваться очень рано, и именно эти возмущения впоследствии превращаются в гигантские обособленные скопления газа.
Многое в зарождении таких космических протоструктур пока непонятно и является предметом активных исследований. Но кое-что мы знаем.
Через миллион лет после Первовзрыва температура падает примерно до 3000 К, Вселенная становится прозрачной для фотонов и нейтрино*. Гравитационное излучение, если верить в его существование, выходит из игры гораздо раньше - вероятно, непосредственно вблизи Сингулярности. Массивные заряженные частицы - протоны и ядра гелия - нейтрализуются, связываясь с электронами в атомы, а у фотонов уже не хватает энергии на ионизацию. Вещество теперь становится слишком холодным, чтобы противодействовать силам тяготения, которые выступают на первый план не только в предельно больших, но и в относительно малых объемах. Гравитация, управляющая эволюцией Вселенной в целом, начинает проявлять себя более локальным образом, формируя относительно независимые острова обычного вещества, конденсация происходит во многих масштабах - ее последствия мы и наблюдаем в виде иерархии космических структур.
* Фактически для электронных нейтрино Вселенная становится прозрачна за первую треть секунды после Первовзрыва.
Очень большие протооблака фрагментируют на меньшие, и отсюда берут начало отдельные галактики. Протогалактическое водородно-гелиевое облако сжимается под действием сил тяготения, сохраняя первоначально почти сферическую форму. Одновременно оно распадается на отдельные сгущения, которые, в свою очередь, служат материалом для формирования шаровых звездных скоплений. Собственно в это же время начинается и процесс звездообразования - гравитация конденсирует материю в еще меньших масштабах отдельных протозвездных облаков.
Итак, часть газа в протогалактическом облаке конденсируется в зародыши шаровых скоплений, а другая часть продолжает сжиматься, все более сплющиваясь под действием вращения. Постепенно устанавливается своеобразное равновесие между тяготением и центробежными силами. Образующиеся
В соответствии с этой картиной, звезды зарождаются как бы на трех стадиях. Самые старые должны находиться в шаровых скоплениях, располагающихся сферически симметрично вокруг центра галактики, а самые молодые - в плоской составляющей.
Несколько в стороне остается важнейший вопрос: что же происходит в центре галактики, как протекает там эволюция вещества? Очень вероятно, что в центре вещество концентрируется особым образом - не просто в плотные скопления звезд, а в какие-то сверхзвездные тела огромных масс и размеров. Эти тела могут, в свою очередь, довольно быстро коллапсировать в гигантские черные дыры. Существование таких центральногалактических супердыр - одна из распространенных гипотез, от ее проверки зависит очень многое. Во всяком случае, огромная излучательная активность галактических ядер и особенно квазаров неплохо объясняется эффективным механизмом захвата вещества супердырой. Другой вариант - очень высокая концентрация в центре Галактики более или менее обычных звезд и черных дыр, которые испытывают достаточно частые столкновения, иногда завершающиеся слиянием. Суммарно система концентрированного "звездного газа" может также обеспечить высокую светимость. Выбор между двумя вариантами затруднен из-за непрозрачности центральной области нашей Галактики. Только тщательный анализ всех участков спектра - в том числе гравитационного и нейтринного - позволит прояснить ситуацию.
Эволюция протозвездных облаков вдали от центра выглядит примерно так. Облако фрагментирует на группу газовых образований, каждое из которых можно рассматривать как протозвезду. Под действием тяготения вещество протозвезды сжимается, потенциальная энергия переходит в тепловую, и вещество постепенно разогревается. Видимо, на этой стадии вращающаяся протозвезда может выделить отдельные сгустки, которые вступают на путь более или менее обособленной эволюции, конденсируясь в планеты*.
*Масса этих обособленных конденсаций может быть достаточно велика, и тогда они превращаются в отдельные звезды. Вероятно, на этом пути и получаются тесные двойные системы.
Масса газа, участвующего в дальнейшем сжатии самой протозвезды, весьма различна, но вряд ли она превосходит 100 или 1000 М(. Разогрев вещества приводит к появлению слабой собственной светимости - протозвезда напоминает теперь "красный гигант". Когда же температура в ее недрах достигает некоторого критического значения, открываются каналы термоядерных реакций, в которых водород синтезируется в более тяжелые элементы. Сжатие приостанавливается - давление газа теперь достаточно велико, чтобы противодействовать гравитации. Протозвезда превращается в настоящую звезду*.
* По современной классификации, под звездой, как правило, понимают компактное и оптически непрозрачное тело, обладающее собственной светимостью L ~ (10-2 ? 104)L( и способное уравновесить действие гравитации за счет внутренних источников энергии. С этой точки зрения протозвезды, остывшие белые карлики (их иногда называют черными карликами), нейтронные звезды и черные дыры нельзя считать звездами. Разумеется, такое разделение (как и всякая классификация, основанная на разрезании эволюционных цепочек) весьма условно.