Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:
Поэтому единственно разумным вариантом выглядит аннигиляционный двигатель с vg/c = 1, где роль истекающего газа играет свет. На его основе рассмотренный полет 100 тонной кабины в режиме двойного разгона-торможения при vmax/c = 0,99 потребует топливной загрузки порядка 4 млн. тонн. Это сама по себе не особенно страшная величина - такую массу имеет водяная "капля" радиусом около 100 метров.
Двигатель выглядит вполне эффективно, но это далеко не единственная проблема. Нужно еще сконструировать сам реактор (существующий лишь как общая научная идея), придумать способ получения и хранения 2 млн. тонн антивещества, обеспечить высокую концентрацию жесткого излучения, для которого обычные рефлекторы не годятся, устроить многое
Все виды топлива имеют одно серьезное преимущество перед антивеществом - их добыча идет в естественных условиях и выгодна в том плане, что энергозатраты на нее уступают энерговыходу добываемого вещества. Антивещество же приходится производить буквально из энергии, к счастью, мы не имеем его месторождений*. На производство 2 млн. тонн антивещества самое малое пришлось бы затратить порядка 4.1026 Дж энергии (с учетом того, что в силу законов сохранения приходится производить примерно одинаковое количество обычного вещества). Установке, полностью использующей всю мощность, перехватываемую Землей у Солнца (2.1017 Вт), пришлось бы непрерывно обслуживать этот проект на протяжении 63 лет и 4 месяцев! И это, не считая огромных потерь, затрат на хранение и транспортировку, наконец, на строительство фантастического ускорителя, способного продуцировать что-то около 2 килограммов элементарных частиц в секунду...
*Здесь не рассматриваются варианты типа "отлова" античастиц в космических лучах. Это было бы безумно долгое и скучное занятие. При глубоком освоении больших участков Вселенной нельзя, конечно, исключить обнаружение крупных космических тел из антивещества.
Уже этого рассмотрения достаточно, чтобы убедиться в простом факте: субсветовые скорости движения ракет - удел цивилизаций II типа, то есть пока очень далекая от нас проблема.
Однако непонятно, насколько возникающие трудности преодолимы даже для них.
Чтобы поддерживать в фазе разгона допустимое для космонавтов ускорение, например 2g, необходима колоссальная эффективность двигателя Р ? 6.109 Вт/кг* (для сравнения укажем, что у современных кораблей с мощными ядерными реакторами она вряд ли доходит до 20, эффективность Солнца как "двигателя" Р( = 2.10-4 Вт/кг). Но в таком случае полная начальная светимость аннигиляционной ракеты составит L = РМ0 ? 2,4.1019 Вт, причем максимум ее спектра будет приходиться на чрезвычайно жесткое излучение**. Получается мощная ?-лучевая звезда, и она представляет огромную опасность для Земли и всего пространства Солнечной системы. При фокусировке излучения порядка одной угловой секунды ракета даже на расстоянии 100 астрономических единиц дает "зайчик" площадью около 4,5 млрд. км2 (на порядок больше площади Земли) и поток радиации раза в 4 превысит общий поток Солнца в районе земной орбиты! Иными словами, ее старт следует устроить где-то на самых окраинах Солнечной системы, видимо, не ближе одного светового года от Солнца. Ну а транспортировка туда горючего малой скоростью (миллисветовые грузовики?) потребует тысячелетий. Идея же промежуточного старта на двигателях обычного типа наталкивается на другую опасность - допустимо ли монтировать аннигиляционную супербомбу в окрестностях Земли?
* В специальной теории относительности ускорение можно задать как: а = P/c, где Р - эффективность (отношение мощности двигателя к массе ракеты).
** При простейшей двухфотонной аннигиляции электрона и позитрона характерная энергия ?-квантов порядка 0,511 МэВ.
Ситуация взаимна. Фотонная ракета не только опасна для окружающей космической среды, но и среда представляет для нее огромную опасность. Если даже предположить идеальные навигационные условия - отсутствие на пути ракеты крупных небесных тел, все равно останется межзвездная среда с плотностью не менее 1 атома водорода в кубическом сантиметре. Это вовсе не страшно для медленных тел, но для релятивистской ракеты космический вакуум будет выглядеть потоком энергичной протонной
Но помимо столь впечатляющих энергетических проблем есть еще кое-что сроки полетов. В релятивистской теории равноускоренного движения возникает естественная константа t= c/a0 (отношение скорости света к ускорению в системе отсчета корабля), характеризующая время разгона до ультрарелятивистских скоростей. При этом времена, измеренные по часам космонавтов (?) и землян (t), связаны
формулой:
? (t) = t0 ln [t/t0 + v(t/to)2 + 1] ( t при t/t0 " 1
? (t) = t0 ln [t/t0 + v(t/to)2 + 1] ( t0ln2(t/t0) при t/t0 " 1,
где мы выделили предельное поведение зависимости ? от t в самом начале разгона и после его завершения. Соответственно, ускорение, скорость полета и траектория корабля выглядят для земного наблюдателя следующим образом:
a(t) = a0/[1 + (t/t0)2]3/2 = a0(1 - v2/c2)3/2 ( a0 при t/t0 " 1,
a(t) = a0/[1 + (t/t0)2]3/2 = a0(1 - v2/c2)3/2 ( 0 при t/t0 " 1;
v(t) = a0t/[1 + (t/t0)2]1/2 ( a0t при t/t0 " 1,
v(t) = a0t/[1 + (t/t0)2]1/2 ( c при t/t0 " 1;
r(t) = r0{[1+ (t/t0)2]1/2 -1} = r0{1/(1 - v2/c2)1/2 -1} ( a0t2/2 при t/t0 " 1,
r(t) = r0{[1+ (t/t0)2]1/2 -1} = r0{1/(1 - v2/c2)1/2 -1} ( ct при t/t0 " 1,
где введена постоянная r0 = ct0 = c2/a0 - характерная длина разгона (при r "r0 корабль практически идет со скоростью света*).
* Это легко увидеть, используя выражение скорости через путь:
v = с[1-1/(1+r/r0)2]1/2 ( v2 a0r r/r0 " 1
v = с[1-1/(1+r/r0)2]1/2 ( c[1-1/2.(r0/r)2] r/r0 " 1
Из формул легко заключить, что ближний полет, скажем, на разведку 44-х звезд, заключенных в радиусе 5 парсеков вокруг Солнца, не представлял бы для космонавтов чего-то неприятного с точки зрения сроков. Путешествие к ? Центавра (расстояние 4,3 световых года) в режиме двойного разгона-торможения при ускорении 2g (t ? 1,53.107с ~ 0,5 года) заняло бы у них всего 5 лет, а на Земле к моменту возвращения прошло бы 10 лет. Скорость ракеты к моменту смены режима не превысила бы 0,988с.
Ситуация резко меняется, когда заходит речь об исследованиях всей Галактики. Чтобы совершить интереснейший полет к центру Галактики (r = 104 парсек), космонавты могут затратить около 22 лет, имея в виду тот же режим с ускорением 2g. Но этот вполне умеренный срок противостоит 65 тысячелетиям ожидания. Что застанут космонавты, вернувшись домой, что найдут взамен утраченной цивилизации? Окажется ли добытая ими информация хоть чем-нибудь полезна?
Между тем, уровень трудностей при сверхдальних бросках принципиально возрастает. При полете в режиме разгон-торможение фотонная ракета достигает максимальной скорости v ? c[1-1/2.(r0/r)2] посреди пути. Для стартовой массы ракеты получаем:
M0/Mк ? (r0/r)4, то есть полет стотонной капсулы к центру Галактики и обратно с ускорением 2g (r0 = 0,15 пс) потребует начальной массы M0 ? 2.1021 тонн ~ 1/3 М(. Ее стартовая светимость будет не меньше 1,2.1034 Вт, что соответствует суммарному излучению скопления в десятки миллионов звезд, а энергия встречной протонной радиации окажется порядка 60 ТэВ (6.1013 электронвольт).
Комментарии к такому проекту, пожалуй, излишни. Впрочем, можно было бы получить и более фантастические числа, рассматривая полет в пределах Местной системы галактик (г ~ 106 пс), когда стартовая масса корабля превысила бы 100 М(, а светимостью (~1042 Вт) он сравнялся бы с приличным галактическим скоплением. Вряд ли стоит обсуждать дальше такие опасные экстраполяции.