Открытия и изобретения, о которых должен знать современный человек
Шрифт:
Если бы яблоко и планета имели примерно равные массы и размеры, то оба обращались бы вокруг общего центра масс.
Они не служили бы фокусом орбиты. Так происходит с двойными звездами. Находясь на поверхности Земли, люди могут видеть лишь действие земного тяготения, собственного притяжения мы не ощущаем. А оно существует.
Подсчитаем, с какой силой притягиваются два человека. Пусть это будут Дон Жуан и Красавица. Если они стоят в 100 м друг от друга, то величина силы составит 3 на 10– 11 Н (ньютонов). Для сравнения отметим, что ручная сила, т. е. сила сжатия кисти, 18-летнего юноши равна 485 Н. Будучи в космосе, Дон Жуан приблизился
Возвращаясь к разговору о Ньютоне, хочется отметить, что, в отличие от многих других ученых, он заслужил признание еще при жизни. На закате дней имя Ньютона было озарено лучами славы, он пользовался заслуженным почетом и уважением со стороны знати, коллег-ученых, простолюдинов. Однако гениальный ученый не испытывал головокружения от неожиданного признания, но скромно объяснял: «Я и видел далеко лишь потому, что, как карлик, стоял на плечах гигантов». Эти слова физика — своего рода дань уважения предшественникам, благодаря научному опыту которых стали возможными и его открытия.
Важнейшие изобретения баллистики
Законы, сформулированные Ньютоном, позволяют человеку не только изучать Вселенную на расстоянии, но и разрабатывать технику космических полетов. Чтобы создать аппарат, способный покинуть поле земного тяготения и уйти к другим планетам, требуется сначала рассчитать особенности его движения. Ведь без математики инженеры не смогут узнать о скоростях, ускорениях, нагрузках и энергетических затратах, с которыми предстоит столкнуться проектируемому реактивному снаряду во время намеченного полета.
Нужно установить, при какой оптимальной массе возможны наилучшие условия старта, наиболее экономичная и целесообразная траектория на том или ином участке полета и т. д. Прикладная физическая дисциплина, занимающаяся вычислениями такого рода и описанием полета реактивных снарядов, носит название космической баллистики. Баллистика вообще представляет собой науку о движении снарядов под действием на них всевозможных сил.
Баллистика занимается, кроме прочего, изучением полета боевых снарядов. Само название орудия восходит к латинскому слову «баллиста». Так древние римляне окрестили метательное осадное орудие, применявшееся при штурме укрепленных городов. Наиболее простейший вариант, с которым имеют дело современные баллистики, занимающиеся динамикой космических полетов, — это поведение реактивного снаряда в гравитационном поле.
Задачей ракетной техники является выведение в космическое пространство (на орбиту или межпланетную трассу) летательного аппарата и любого другого тела, которые носят название полезного груза. Полезным грузом может быть все: модуль орбитальной станции, шаттл, искусственный спутник, межпланетный зонд, сами космонавты. Полезный груз, в отличие от самого снаряда, будет выполнять работу вне Земли.
Масса полезного груза очень велика, поэтому, чтобы вынести его в космос, требуется затратить большое количество энергии. Беспредельно уменьшать массу невозможно, поскольку в этом случае многие технические узлы не станут функционировать. Если же на орбиту отправляется космонавт, то его массу и массу необходимых ему пищи и кислорода
В течение всего полета двигаться на одной и той же скорости снаряд не может, поскольку нести большую массу, достигающую порядка 10 т минимум, можно лишь при больших запасах энергии. Однако столь внушительное количество топлива само обладает солидной массой. В итоге придется добавлять топливо для перевозки топлива и далее до бесконечности. Возможен ли полет без непрерывных энергетических затрат?
Вполне! Именно так летит с силой брошенный камень. Человек сообщает ему энергию лишь в момент броска — «старта». В дальнейшем камень летит самостоятельно. Чем большей начальной скоростью он обладает, тем больше у него шансов улететь как можно дальше. Соответственно, ракета также должна стартовать на большой скорости. Чем больше скорость, тем меньше расход топлива и меньше масса снаряда. Следовательно, ракета свободно выйдет на орбиту или даже покинет поле земного тяготения.
В первом случае, как показывают подсчеты, стартовая скорость снаряда должна равняться второй космической, т. е. 7,91 км/с. По мере возрастания начальной скорости ракета сможет приобретать все более сложную (вытянутую, эллиптическую) околоземную орбиту. Стартовав на скорости 11,19 км/с, снаряд способен беспрепятственно уйти в мировое пространство. Конечно, улететь к Марсу можно и на скорости, равной 7,9 км/с и даже 80 км/ч! Однако запасы топлива потребуются столь значительные, что колосс не пролетит и ничтожной доли пути.
Первая и вторая космические скорости были достигнуты человеком 4 октября 1957 г. при запуске первого искусственного спутника Земли и 2 января 1959 г. при запуске первой космической ракеты в направлении Луны. Оба аппарата были запущены за пределы земной атмосферы отечественными учеными. Третья космическая скорость в настоящее время не достигнута. Она необходима, чтобы преодолеть притяжение Солнца и покинуть пределы Солнечной системы. Эта скорость равна 16,67 км/с у земной поверхности. Летательные аппараты, ушедшие за пределы Солнечной системы («Пионеры», «Вояджеры»), использовали гравитационные маневры и веньерные двигатели, чтобы выйти из поля солнечной гравитации.
Заботы баллистиков не ограничиваются изучением брошенных кем-то камней. Ракету при всем желании нельзя отправлять в космос со столь большим ускорением. Реактивный снаряд приобретает необходимую скорость постепенно, поскольку большое ускорение опасно перегрузками, которые не выдержит не только человеческий организм, но и сложная техника. Таким образом, стартовая скорость подбирается весьма скрупулезно. Математически высчитывается участок траектории, на котором необходимо перейти на космическую скорость. Ускорение подбирается с учетом не только перегрузок, но и сопротивления воздуха, которое может составлять свыше 40 т.
Выход на орбиту является наиболее ответственным этапом полета. Баллистики различают несколько типов выхода, называемых схемами выведения: активный вывод, баллистический вывод и эллиптический вывод. Активный вывод имеет свои преимущества, но он наименее подходящий.
При такой схеме выведения двигатели должны работать на полную мощность в течение всего полета. Две остальные схемы используют маневры с орбитами (эллиптический) и экономят топливо (баллистический), подключая все мощности двигателей лишь на определенных участках трассы.