Открытия и изобретения, о которых должен знать современный человек
Шрифт:
Задолго до того, как ученые столкнулись с проблемами осуществления термоядерного синтеза, английский физик А. Эддингтон выдвинул смелое предположение, что звезды горят благодаря протеканию в их недрах термоядерных реакций. До того времени ученые выдвигали самые невероятные гипотезы для объяснения причины свечения звезд.
Ближе всех к истине подошел Г. Гельмгольц. Он предположил, что разогревание недр звезды объясняется ее сильным гравитационным сжатием под действием собственного тяготения. Однако в таком случае запаса теплоты такому светилу, как Солнце, хватило бы максимум на 1,8 млн лет. Гипотеза Гельмгольца была справедлива лишь отчасти. Звезда действительно разогревалась под влиянием гравитационного
В 1937 г. американскому ученому Г. Бете удалось доказать протекание термоядерных реакций на Солнце, следовательно, Эддингтон оказался совершенно прав. Звезды действительно черпают свою колоссальную энергию из протекающих в их недрах реакций термоядерного синтеза. Если бы наше Солнце состояло из угля или бензина, то выгорело бы за 1000 лет. Более калорийным и долговечным топливом, чем бензин, может служить только ядерное горючее. Все звезды горят благодаря реакциям синтеза ядер, поэтому астрофизическое изучение этих космических объектов значительно продвинуло ядерную физику вперед.
Сегодня известно, что небесное тело может зажечься и самостоятельно светиться, если оно имеет массу свыше 0,2 солнечной. Во Вселенной обнаружены огромные звездообразные тела, т. н. коричневые карлики. Их масса приближается к 0,2 солнечной, но она недостаточна для поддержания высокой температуры внутри недр. Тем не менее новорожденные звезды могут иметь самые разные размеры и массы, главное, чтобы количество вещества превышало минимальную отметку.
От размеров и массы светила зависит ход термоядерных процессов в его недрах и его дальнейшая судьба. Маленькие светила, чьи масса и размеры значительно меньше солнечных, относятся к красным карликам и эволюционируют медленно. Проходят десятки миллиардов лет (до 80 млрд), прежде чем красные карлики превратятся в новый тип звезд. За это время звезды остальных типов успевают сильно измениться. Крупные бело-голубые светила, значительно превосходящие Солнце, сжигают запас водорода стремительно, за неполные 1,5 млн лет.
После этого они начинают постепенно разрушаться, но сначала проходят стадию пульсирующих звезд. У пульсаров в недрах горит гелий, и его неравномерное горение вызывает частые колебания внешнего газового слоя и, соответственно, периодические изменения светимости. Такие звезды то увеличиваются, то уменьшаются; поток лучистой энергии из их недр то возрастает, то идет на убыль. В силу этой причины звезды такого рода названы переменными. Астрономам известны несколько классов пульсирующих переменных. Это красные гиганты, красные сверхгиганты и желтые гиганты (лириды).
Как понятно из названий светил, их линейные размеры крайне велики и часто в сотни раз превосходят солнечные. Самая большая звездная масса, точно измеренная астрономами, в 50 раз превосходит солнечную. В таких звездах протекает синтез углерода из гелия. Некоторые красные гиганты не только производят углерод, но и активно выпускают его в мировое пространство. Попадая в открытый космос, углерод быстро застывает, превращаясь в сажу. Она на время окутывает звезду сплошным покрывалом, заметно снижая блеск светила.
Постепенно, по мере выгорания гелия, пульсации переменных становятся все более аритмичными и напряженными. Процесс заканчивается грандиозным взрывом. Газовая оболочка звезды разлетается в пространстве, образуя горячую туманность. Ядро взорвавшейся звезды, которую земной наблюдатель назовет новой или сверхновой, превращается под действием сжатия в нейтронную звезду или, предположительно, в «черную дыру». Подобная нейтронная звезда обнаружена на месте сверхновой в созвездии Тельца. Сейчас там находится
Впрочем, конец не всегда наступает после полного выгорания гелия. Звезда может, исчерпав свои запасы гелия, перейти на синтез более тяжелых элементов, чем углерод. Известна звезда, вырабатывающая кремний и бурно извергающая его в космос. Кремниевый газ стремительно застывает, превращаясь в песчинки. Вокруг звезды возникает зона, полная настоящего песка.
Солнцеподобные светила почти не взрываются и не превращаются в нейтронные звезды или «черные дыры». Солнце после угасания начнет терять газовую оболочку. Она станет расширяться, поглощая планеты, а затем превратится в сферическую туманность. Ученые часто наблюдали такие туманности, с Земли они похожи на колечки сигарного дыма. В центре сферической туманности, называемой астрономами планетарной, останется сильно сжатое ядро звезды. Оно само станет звездой, поскольку будет светить за счет запасов тепловой энергии. Такие слабые светила называют белыми карликами.
Изучение законов термоядерного синтеза принесло астрономам множество больших и малых открытий, касающихся не только звезд. Сегодня почти все космологические представления так или иначе затрагивают ядерно-физическую эволюцию мироздания. Сама Вселенная родилась в результате чудовищной силы взрыва мельчайшей частицы с поперечником 1031 см. Внутри этой частицы пребывала вся мировая материя, сжатая до плотности 1095 г/см3.
Эпоха Большого взрыва, как называют пору возникновения Вселенной, характеризуется интенсивным синтезом простейших частиц из вакуума. Впрочем, сам по себе тогдашний вакуум резко отличался от нынешнего. Это было вакуумообразное состояние материи, предельно насыщенное энергией. Запасы энергии придавали материи температуру около 10 млрд С и возбуждали в вакууме огромные силы отрицательного тяготения. Оно вызвало ускоренное расширение пространства сразу во всех точках.
Сверхгорячая расширяющаяся материя представляла собой т. н. «кипящий котел», в котором протекали бурные реакции синтеза за счет значительных энергетических запасов простейших частиц — протонов, электронов, антипротонов и позитронов. Антипротоны и позитроны являются античастицами, т. е. частицами с обратным знаком. Антипротон — это отрицательный протон, а позитрон — положительный электрон.
Частицы и античастицы активно взаимодействовали друг с другом, самоуничтожаясь при этом. Их энергия переходила в фотоны, которые со временем заполнили всю Вселенную в виде холодного реликтового излучения. Но поскольку существовал небольшой избыток протонов и электронов перед античастицами, то нормальное вещество сохранилось и сложило облака космического газа. Постепенно, в процессе их уплотнения, в них образовались сгущения, ставшие звездами. В недрах звезд начался термоядерный синтез тяжелых элементов из водорода.
Современная астрофизика и смежные с ней направления астрономической науки являются по сути дела ядерной физикой, «увеличенной» до космических масштабов. Вселенная служит гигантским термоядерным реактором и одновременно лабораторией, где происходят различные превращения вещества и рождаются невероятные лучи. Благодаря астрономическим наблюдениям с применением детекторов ядерных излучений физики могут как находить подтверждение старым гипотезам, так и совершать новые открытия.