Чтение онлайн

на главную - закладки

Жанры

Открытое общество и его враги
Шрифт:
6.7

Как отмечалось в главе 4 (прим. 18 и соответствующий текст, а также прим. 29), Платон немного говорит в «Государстве» о рабах, хотя то, что он говорит, достаточно важно. Однако все сомнения по поводу его установки относительно рабства развеиваются в «Законах» (см. особенно статью Г. Морроу, на которую мы ссылались в прим. 29 к гл. 4 — G. R. Morrow. Plato and Greek Slavery // Mind, N.S., vol. 48, pp. 186-201, 402).

6.8

Цитаты взяты из работы Э. Баркера (Е. Barker. Greek Political Theory, I, p. 180). Баркер утверждает (р. 176 и след.), что «платоновская справедливость» — это «социальная справедливость», и верно отмечает ее холистскую природу. Он замечает (р. 178 и след.), что возможна критика этого определения, связанная с тем, что эта формула «не… затрагивает сущности того, что люди обычно подразумевают под этим словом», т.е. «принцип, позволяющий преодолеть столкновение воль», иначе говоря, справедливость в применении к личностям. Однако он

полагает, что «такое возражение не относится к делу» и что платоновская идея — это «понятие социальной морали», не имеющее отношения к закону (р. 179). Более того, он утверждает, что такое понимание справедливости в определенном смысле соответствовало современным Платону древнегреческим идеям справедливости: «Определяя так справедливость, Платон не ушел далеко от идей, бытовавших в Древней Греции». Баркер даже не упоминает о том, что существуют свидетельства об обратном, — подобные тем, которые мы обсудим в следующих примечаниях и в тексте.

6.9

См. «Горгий», 488 е и след. Более полно этот фрагмент процитирован и рассмотрен в разделе VIII этой главы (см. прим. 48 к этой главе и текст). Об аристотелевской теории рабства см. прим. 3 к гл. 11 и текст. В данном абзаце цитаты из Аристотеля взяты из следующих сочинений: (1) и (2) «Никомахова этика», V, 4, 7 и 8; (3) «Политика», III, 12, 1 (1282b; см. также прим. 20 и 30 к настоящей главе. Этот отрывок содержит упоминание «Никомаховой этики»); (4) «Никомахова этика», V, 4, 9; (5) «Политика», IV (VI), 2, 1 (1317b). В «Никомаховой этике», V, 3, 7 (см. также «Политику», III, 9, 1; 1280а) Аристотель также замечает, что значение слова «справедливость» неодинаково в демократическом, олигархическом и аристократическом государствах, причем различия соответствуют различному пониманию того, что такое «заслуга».

(Следующий далее текст до конца примечания 9 был впервые добавлен к американскому изданию 1950 года.)

О взглядах Платона на политическую справедливость и равенство, как они изложены в «Законах», см. особенно фрагмент о двух видах равенства («Законы», 757 b-d), цитируемый далее в пункте (1). О том, что при распределении почестей и наказаний следует учитывать не только добродетели и воспитанность, но и здоровье (и даже рост и благообразность), см. «Законы», 744 с. Этот отрывок процитирован в прим. 20 (1) к настоящей главе, где рассмотрены и другие фрагменты, затрагивающие данную тему.

(1) В «Законах», 757 b-d Платон анализирует «два вида равенства». Прежде всего Платон пишет: «Из этих двух видов первому может отвести почетное место всякое государство и всякий законодатель, руководя его распределением с помощью жребия: таково равенство меры, веса, числа. Но любому человеку нелегко усмотреть самое истинное и наилучшее равенство… Большему оно уделяет больше, меньшему — меньше, каждому даря то, что соразмерно его природе. Особенно большой почет воздает оно всегда людям наиболее добродетельным; противоположное же — тем, кто меньше преуспел в добродетели и воспитанности. Каждому оно разумно дарит надлежащее. У нас все относящееся к государственному устройству постоянно совпадает со справедливостью… Если кто-то когда-нибудь будет устраивать другое государство, то и ему надо будет издавать законы, постоянно имея в виду именно это — справедливость… В этом-то и заключается только что высказанная нами мысль о равенстве, установленном в каждом отдельном случае для неравных согласно природе» (курсив частично мой). Второй вид равенства соответствует тому, что Платон называет «политической справедливостью», а Аристотель — «распределительным правом». Этот вид равенства Платон и Аристотель описывают как «пропорциональное равенство» — самое истинное, самое естественное и самое лучшее равенство. Позже Платон назвал его «геометрическим» равенством («Горгий», 508 а; см. также 465 b/с и Плутарх. Moralia, 719 b и след.) в противоположность более низкому и демократическому «арифметическому» равенству. Понимание этих видов равенства поясняется в (2).

(2) Традиционно считается (см. Comm. in Arist. Graeca, pars XV, Berlin, 1879, p. 117, 29; pars XVIII, Berlin, 1900, p. 118, 18), что изречение у входа в платоновскую Академию гласило: «Да не переступит этого порога тот, кто не искушен в геометрии!». Как мне представляется, этот лозунг не только подчеркивал важность математических исследований, но и означал следующее: «Арифметики (точнее — пифагорейской теории чисел) недостаточно — вы должны знать геометрию!». Я попытаюсь в общих чертах пояснить, почему последняя фраза верно отражает самое важный вклад Платона в науку. См. также «Дополнение I» к тому 1.

Теперь уже общеизвестно, что подход ранних пифагорейцев к геометрии методологически был сходен с тем, что сегодня называют «арифметизацией». Геометрия считалась частью теории чисел (или «натуральных» чисел, т.е. чисел, составленных из монад или «неделимых единиц» — см. «Государство», 525 е) и теории их «», т.е. «рациональных» отношений. Пифагорейские прямоугольные треугольники, например, могли иметь стороны, отношения между которыми выражались отношениями или пропорциями целых чисел (3:4:5 или 5 : 12 : 13). Общая формула вывода таких пропорций, открытие которой приписывается Пифагору, имеет такой вид:

2n + 1 : 2n (n + 1) : 2n (n + 1) + 1

Однако

эта формула, полученная при наблюдении за «гномоном», не является достаточно универсальной, что показывает следующий пример — 8:15:17. Универсальной формулой, из которой выводится пифагорейская путем подстановки m = n + 1, является:

m2– n2 : 2mn : m2 + n2,

где m > n, а ":" — знак пропорции.

Поскольку эта формула легко выводится из теоремы Пифагора (применяя некоторые алгебраические приемы, которые, по-видимому, уже были известны ранним пифагорейцам) и поскольку она, очевидно, не была известна не только Пифагору, но и Платону (который, согласно Проклу, вывел другую неуниверсальную формулу), то можно сделать вывод о том, что «теорему Пифагора» в общем виде не знал ни Пифагор, ни даже Платон. (Менее радикальный взгляд на эту проблему изложен в книге Т. Хита: Т. Heath. A History of Greek Mathemathscs, 1921, vol. 1, p. 80-82. Формула, которую я назвал «универсальной», принадлежит Евклиду. Ее можно получить из излишне усложненной формулы, которую Хит приводит на с. 82 своей книги, сначала получив значение длины трех сторон треугольника и умножив полученные результаты на 2/m, а затем произведя замену m на n и p на d.)

Открытие иррациональности значения квадратного корня из двух (об этом открытии Платон упоминает в «Гиппии Большем» и в «Меноне» — см. прим. 10 к гл. 8, а также Аристотель. «Первая Аналитика», 41а 26 и след.) доказало невозможность осуществления пифагорейской программы «арифметизации» геометрии, а вместе с тем, по-видимому, и нежизнеспособность самого пифагорейского Порядка. Сведения о том, что это открытие сначала не подлежало разглашению, подтверждаются тем фактом, что Платон первоначально все еще называл иррациональное термином «», т.е. секрет, сокровенная тайна — см. «Гиппий Больший», 303 b/с, «Государство», 546 с. (Позднее он стал употреблять термин «несоизмеримость» — см. «Теэтет», 147 с, и «Законы», 820 с. Термин «» впервые появился, по-видимому, у Демокрита, написавшего сочинение из двух книг под названием «Об иррациональных линиях и атомах» или «О несозмеримых линиях и телах», которое было утеряно. Платону был известен термин «», о чем свидетельствует презрительное упоминание названия труда Демокрита в «Государстве», 534 d, но он никогда не использовал его в качестве синонима термину «». Первое несомненное использование термина «» в этом смысле мы находим у Аристотеля во «Второй Аналитике», 76b 9. См. также книгу Т. Heath, op. cit., vol. I, p. 84 и след., р. 156 и след. и мое «Дополнение I» в конце тома 1.)

Крушение пифагорейской программы арифметизации геометрии привело, по-видимому, к разработке аксиоматического метода Евклида, предназначенного, с одной стороны, спасти от краха то, что еще можно было спасти в математике (в том числе и метод рациональных доказательств), и с другой стороны, ассимилировать факт несводимости геометрии к арифметике. Поэтому весьма вероятно, что Платон сыграл чрезвычайно важную роль в переходе от древнего пифагорейского метода к методу Евклида — фактически, он был одним из первых создателей специфически геометрической методологии, цель которой состояла в покрытии издержек краха пифагореизма. Все это, конечно, следует рассматривать лишь как смелую историческую гипотезу, хотя некоторые аргументы в ее пользу можно найти у Аристотеля во «Второй Аналитике», 76b 9 (об этом фрагменте я уже упоминал ранее), особенно если сравнить этот отрывок с тем, что сказано в «Законах», 818 с, 895 е (о четном и нечетном), 819 е/820 а и 820 с (о несоизмеримости). Аристотель пишет: «Арифметика [исследует], что такое нечетное и четное… геометрия — что такое несоизмеримое» (см. также «Первую Аналитику», 41а 26 и след., 50а 37, и «Метафизику», 983а 20, 1061b 1-3, где проблема несоизмеримости трактуется как принадлежащая к геометрии, и 1089а, где, как и во «Второй Аналитике», 76b 40, есть намек на «Теэтет», 147 d, в котором говорится о свойствах квадрата со стороной в одну стопу.) То, что Платона глубоко интересовала проблема иррациональности, хорошо показывают два упомянутых ранее отрывка: «Теэтет», 147 с-148 а, и «Законы», 819 d-822 d, где он говорит о том, что ему жаль тех греков, которые не дожили до открытия великой проблемы несоизмеримости величин.

Теперь я хотел бы высказать гипотезу о том, что платоновская «теория первичных тел» (см. «Тимей» 53 с-62 с, возможно, даже вплоть до 64 а, а также «Государство», 528 b-d) была одним из средств решения этой проблемы. Эта теория, сохраняя, с одной стороны, пифагорейский атомизм, т.е. учение о неделимых единицах («монадах»), которые фигурировали также и в более поздних атомистических учениях, с другой стороны, ассимилирует иррациональные величины (квадратные корни из двух и трех), так как закрыть глаза на их присутствие в мире было уже невозможно. В этой теории говорится о двух труднопостижимых треугольниках: один из них образуется двумя сторонами и диагональю квадрата и имеет гипотенузу, кратную квадратному корню из двух, а другой получается путем проведения из вершины равностороннего треугольника высоты, длина которой кратна квадратному корню их трех. Учение о том, что эти два иррациональных треугольника являются пределами («» — см. «Менон», 75 d-76 а) или формами всех элементарных физических тел может быть названо одной из центральных физических доктрин «Тимея».

Поделиться:
Популярные книги

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Землянка для двух нагов

Софи Ирен
Фантастика:
космическая фантастика
5.00
рейтинг книги
Землянка для двух нагов

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Хроники сыска (сборник)

Свечин Николай
3. Сыщик Его Величества
Детективы:
исторические детективы
8.85
рейтинг книги
Хроники сыска (сборник)

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Старая дева

Брэйн Даниэль
2. Ваш выход, маэстро!
Фантастика:
фэнтези
5.00
рейтинг книги
Старая дева

Последняя Арена 9

Греков Сергей
9. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 9