Палеонтология антрополога. Книга 1. Докембрий и палеозой
Шрифт:
Таппания и другие похожие микроокаменелости суммарно называются акритархами. Среди этой заведомо сборной группы планктона наверняка были и водоросли, и какие-то иные существа. Между прочим, в пользу эукариотического статуса акритарх говорит как их большой размер, так и шиповатость наружных оболочек. У бактерий поверхность всегда гладкая, максимум могут быть жгутики, а вот эукариоты со своим мощным метаболизмом могут направить часть энергии на создание всяких украшений.
Маленькая тонкость
Эти же два признака – величина и скульптурность – могут быть использованы как маркеры существования в тогдашних морях каких-то других живых существ. Когда есть кто-то беззащитный и притом съедобный, обязательно найдется и кто-то хищный. Избежать напасти можно разными способами: стать незаметным или быстрым, ядовитым или малопитательным, бронированным или опасным, изменить суточный ритм или величину. Судя по тому, что некоторые раннепротерозойские акритархи уже были шипастыми, кто-то их уже ел. Правда рельеф мог возникнуть и для других целей, например, лучшего удержания в парящем состоянии в воде или сцепляния в компании. Но до момента 1,35 млрд л. н. акритархи были маленькими – так легче болтаться в толще воды и не тонуть. А вот после они начинают расти, достигая рекордных значений аж в 2 – 3 мм
Крупнокалиберность – почти предел для одноклеточных существ – возникла явно неспроста. А ведь один из хороших способов спастись от хищника – увеличиться в размерах, чтоб у супостата пасть так широко не смогла открыться. Одновременно некоторые акритархи опять становятся шипастыми. Очевидно, было от кого защищаться, существовали и какие-то другие твари, нападавшие на акритарх. К сожалению, хищники не имели мало-мальски твердых оболочек, а потому не оставили никаких палеонтологических следов. Можно лишь догадываться, что это были какие-то «амебоиды».
Забегая вперед, можно упомянуть, что заметно позже, в венде, акритархи резко уменьшились, зато приобрели еще более мощные шипы: гонка защиты и вооружения продолжалась. Очевидно, возникли уже очень большие хищники, и тогда стало полезно быть маленьким, так как крупному плотоядному невыгодно гоняться за мелочью – при этом он потратит больше энергии, чем по лучит, съев малявку.
Еще одно следствие сочетания аэробности, эукариотичности, конкуренции и пресса хищников – появление многоклеточности. Ключевым тут стало, как ни мрачно это звучит, изобретение смерти. Дело в том, что одноклеточные организмы технически вечны, ведь нельзя же считать деление надвое за гибель (кстати, из этого вырастает проблема индивида и эволюции индивида: любая современная амеба или эвглена – это тот же конкретный индивид, что жил миллиарды лет назад, причем амеба за эти бездны поколений накопила огромные отличия от эвглены). В принципе, то же происходит с колониальными организмами: любая клетка в колонии только тусуется рядом с остальными, но делится сама по себе. А вся суть многоклеточного организма в том, что только некоторые избранные клетки получают шанс на бессмертие, а остальные имеют сугубо вспомогательную роль и обречены на исчезновение. Но любая клетка по исходной своей сути стремится безгранично делиться и жить вечно, убедить ее в обратном крайне сложно, особенно учитывая, что геном-то во всех клетках многоклеточного существа одинаков, ведь все они – производное одной исходной зиготы (а когда клетка многоклеточного организма из-за мутации сходит с ума и все-таки вдруг решает, что она бессмертна, она становится раковой, причем тем более опасной, что весь геном-то и базовая биохимия у нее родные, так что иммунная система на нее не реагирует). Для того чтобы в одних клетках работали одни группы генов, а в других они молчали, а включались иные, нужна очень хитрая регуляция и как минимум огромный размер генома. А для создания огромной, длинной-предлинной ДНК, в которой были бы прописаны программы для сотен вариантов клеток, нужно огромное количество энергии. Именно поэтому в анаэробные времена о многоклеточности нельзя было даже мечтать, да и аэробные бактерии, хотя и сделали несколько попыток перехода на многоклеточность, так и не сдюжили. Колониальность бактерии еще смогли освоить, но на большее у них не хватило ни энергии, ни размера генома.
Как вы там, потомки?
Внешний вид и свойства предков многоклеточных мы можем в общем виде представить, изучая современных потомков. В нашем сложном организме есть клетки с ложноножками (например, лимфоциты), есть со жгутиками (волосковые клетки внутреннего уха и сперматозоиды), есть с ресничками (этих и вовсе много, например, в водопроводе мозга, верхнем носовом ходе, трахее и маточной трубе). А ведь геном в каждой клетке один и тот же, значит, предок обладал всеми этими приспособлениями одновременно. Из современных существ подобные универсалы есть в типе Percolozoa и классе Heterolobosea – Naegleria fowleri, а также типе Amoebozoa и классе Archamoebea – Mastigamoeba aspera. Правда, даже у них не бывает одновременно всех трех типов отростков. Видимо, предок не был увешан и ресничками, и жгутиками, и псевдоподиями зараз, а отращивал их в разные периоды жизни.
Среди современных существ самым примитивным многоклеточным является Trichoplax adhaerens, выделяемый в собственный тип пластинчатых Placozoa. Это абсолютно бесформенное существо выглядит как пленочка – обрывок водоросли. Первый образец был найден на стенке морского аквариума, и для меня останется вечной загадкой – как вообще на такую фигню можно было обратить внимание? Но на то и крутые зоологи – а первооткрыватель трихоплакса Франц Шульце был не просто крутым зоологом, а немецким профессором образца XIX века, – чтобы среди всякого мусора разглядеть уникальных существ и заинтересоваться их строением. У трихоплакса нет ни органов, ни внятных тканей, но есть несколько типов клеток разного назначения, причем не все из них могут размножаться половым путем. Хотя трихоплакс может делиться почкованием (а иногда разные его половины решают ползти в разные стороны, отчего он рвется пополам), на регенерацию есть определенные ограничения: не каждый оторванный кусочек восстановится как полноценный организм. А это – отличный показатель многоклеточности!
Долгое время трихоплаксы были известны только по образцам из аквариумов, где оказывались случайно, но в последнее время хитрые зоологи наловчились ловить их в морях. Выяснилось, что они не такие уж редкие и однообразные, просто маловыразительные и неприметные. Уже описан новый род и вид Hoilungia hongkongensis, и нет сомнений, что родня будет прибывать и дал ее.
Примитивность трихоплакса может быть первичной или же вторичной – как результат упрощения. Но в любом случае примерно так должны были выглядеть наши про терозойские предки.
Первые предположительно многоклеточные макроорганизмы обнаруживаются в Китае в формации Чанчэн 1,8 – 1,65 млрд л. н. – безымянные нитчатые или даже пластинчатые водоросли, впрочем, сомнительные. В США 1,5 млрд л. н. и в Австралии 1,4 млрд л. н. (здесь и далее речь о физической географии) Horodyskia выглядели как извилистые линии загадочных шариков или пузырьков, возможно, связанных между собой общей подземной нитью. В России на Тиманском кряже 1 млрд л. н. Parmia была похожа не то на губку, не то на голотурию и притом ее тело было явно сегментировано. В индийских отложениях с датировкой от 1090 до 740 млн л. н. Tawuia dalensis выглядела как замкнутая овальная капсула, а Chuaria circularis – как идеальный круг. Там же и в Северном Китае 840 – 740 млн л. н. Protoarenicola baiguashanensis, Pararenicola huaiyuanensis, P. fuzhouensis и Sinosabellidites huainanensis вроде бы имели отверстие на конце очень
Забайкальские Udokania выглядят как полые ветвящиеся кальцитовые трубки с септами внутри; есть мнение, что это – домики древнейших стрекающих кишечнополостных. А между прочим, древнейшие удокании жили уже в раннем протерозое и успешно просуществовали до венда.
Все же относительно некоторых существ у нас уверенности больше. Например, Bangiomorpha pubescens из Канады с датировкой 1,2 млрд л. н. наверняка была древнейшей известной красной водорослью нитчатого типа, в которой клетки следовали друг за другом по цепочке. Предположительно, они были родственны современным бангиевым водорослям Bangiophyceae или, по крайней мере, очень на них похожи. Попозже, очевидно, появились и другие варианты организации таллома – пластинчатые, корковые и кожистые. Планета покрылась водорослевыми лугами и зацвела на новом уровне. Любопытно, кстати, что эти эукариотические сообщества всегда обнаруживаются строго отдельно от прокариотных – строматолитов и прочих подобных.
Bangiomorpha pubescens. Красная водоросль
Jacutianema solubila с датировкой от 800 до 750 млн л. н., предстающая в виде цилиндрических пузырьков, очень похожих на современных вошерий Vaucheriales, вполне может быть желто-зеленой водорослью Xanthophyceae. Попозже, около 750 млн л. н. возникают, видимо, и зеленые водоросли Protocladus lingua.
Как вы там, потомки?
Красные водоросли замечательны тем, что, в отличие от прочих растений, имеют насыщенный красный цвет и растут на большой глубине. У красных водорослей есть особый вариант хлорофилла, не встречающийся у других растений, а также есть несколько версий ксантофилла, фикоэритрин и фикоцианин – красный и синий пигменты, известные также у цианобактерий. Красные фотоны низкоэнергетичны и плохо проникают на большую глубину, так что поглощать их не имеет смысла. Остается использовать синие фотоны и зеленые. В итоге, красные водоросли на глубине не красные, а бесцветные; когда же мы достаем их на поверхность, где есть красные фотоны, то водоросли вдруг приобретают яркий цвет. Между прочим, эта фишка широко используется глубоководными животными, например, кишечнополостными, для создания невидимости: если быть ярко-красным на большой глубине, где нет красных фотонов, то ничего не отражается, весь свет поглощается, и зверек становится совершенно невидим – пока мы не вытягиваем его за тентакли на поверхность, где он расцветает багрянцем. Протерозойские красные водоросли могли расти и на мелководье, но в мутных водах условия не особо отличаются от глубоководных, так что красный цвет был тут весьма кстати.
Бангиевые – самые примитивные красные водоросли, среди них встречаются даже одноклеточные формы, а на разных представителях можно наглядно видеть переходы к нитчатой колониальности и многоклеточности в виде широких плоских талломов, в крайних вариантах развивающих даже специальную прикрепительную подошву из множества слившихся ризоидов.
Еще одно следствие эукариотичности – в большом геноме вероятнее большие нарушения, мутации никто не отменял. При этом клетке с двойной ядерной мембраной уже не так легко хватать чужие гены горизонтальным переносом, а для усложнившейся системы с хитрым биохимическим балансом это и не всегда полезно. Отсюда прямо вырастает необходимость отладки системы рекомбинации генов, то есть их тасования в поисках новых и лучших комбинаций. А это – залог полового размножения. Как обычно, системы комбинаторики возникали неоднократно и параллельно, что мы видим на примере современных живых существ, а у древних наверняка существовали и какие-то другие, теперь исчезнувшие. Впрочем, эта тема палеонтологически совсем не освещена.
Главное в половом размножении то, что потомство получает два различающихся набора генов, которые еще к тому же при образовании половых клеток перемешиваются – рекомбинируют. Два набора генов дают некоторую гарантию: если с одним что-то не так, то на втором можно выехать. Рекомбинация же с помощью кроссинговера (тут многим читателям придется вспомнить школьный учебник или посмотреть в словаре – эта книга о палеонтологии, все умные слова в ней объяснять невозможно) гораздо лучший способ получения новых генетических вариантов, чем мутагенез. Мутации – это обычно некие нарушения, в лучшем случае они нейтральны, но значимые мутации обычно вредны. Лишь изредка организмам везет, и в новых условиях среды мутация оказывается полезной. Другое дело – рекомбинация: если уж родители дожили до полового размножения, наверняка с их генами все более-менее в порядке, а смешение хорошего и хорошего тоже, наверняка даст что-то неплохое (жаль, в кулинарии это правило не всегда работает!).
Маленькая тонкость
Вариантов половых клеток и полового размножения хватает.
Изогамия была типична для первых существ, которые, очевидно, не делились по разным полам; такой вариант до сих пор характерен для многих водорослей.
Гетерогамия, или анизогамия – более продвинутый вариант, когда гаметы похожи по строению (и обычно имеют жгутики), но отличаются по размеру; эта версия существует у бурых и некоторых зеленых водорослей.
Оогамия – вариант, когда гаметы отличаются и по строению, и по размеру; в этом случае мелкие, оснащенные жгутиками, а потому подвижные гаметы считаются мужскими и зовутся сперматозоидами (если жгутик исчезает, то – спермиями), а большие, без жгутиков и неподвижные – женскими яйцеклетками.
Возможны и более редкостные типы перемешивания генетической информации.
Соматогамия – слияние двух вегетативных клеток гаплоидного мицелия – встречается у базидиальных грибов.
Хологамия – слияние целых одноклеточных организмов – у одноклеточных зеленых водорослей и низших грибов.
Конъюгация – временное слияние с обменом участками хромосом – у инф узорий.
В большинстве случаев возникали два пола – условные мужской и женский. Мужской выполняет функцию распространения, женский – запаса питательных веществ для первых стадий роста потомства. В принципе, этого более чем достаточно, это экономно и энергетически выгодно. Тем интереснее, что у грибов бывает много и даже очень много полов. Гриб щелелистник Schizophyllum commune – рекордсмен: у него 23 328 (по другим подсчетам даже до 28 000) полов. То-то хитрые романы могли бы писать грибы, если бы могли писать хитрые романы!