Чтение онлайн

на главную - закладки

Жанры

Палеонтология антрополога. Три эры под одной обложкой
Шрифт:

Счастливые обладатели кислородного синтеза, или аэробного дыхания, совершили рывок из грязи в князи. При окислении выделяется много энергии: чтобы в этом убедиться, достаточно что-нибудь поджечь и сунуть в огонь палец – вот она, мощь окисления! Вопрос только в том, как обуздать эту бездну энергии. Те, кто первые смогли зарегулировать новый источник силы, получили огромное преимущество: теперь они могли создавать гораздо больше органических веществ за меньший отрезок времени. А это позволило кооперироваться. А это стало залогом появления эукариот, то есть клеток с ядром.

* * *

Ядерные организмы возникли 2,1–1,9 млрд л. н. (по самым смелым оценкам даже 2,7 млрд л. н., но это вряд ли). Судя по составу генов современных существ, эукариоты стали своеобразными химерами-матрёшками, включившими в свой состав много компонентов. Большая часть ядерных генов и цитоплазма достались нам от анаэробного архейного предка, а митохондрии и (у самых везучих) пластиды – от аэробных бактерий. Обычно упрощённо это преподносится так, что то ли некая архея съела бактерий, но недопереварила, то ли бактерии были внутриклеточными паразитами, а архея заизолировала их в вакуоли.

В последующем бывшие цианобактерии, а ныне пластиды стали использоваться как генераторы глюкозы, а альфапротеобактерии – митохондрии – как производители АТФ. При этом те и другие сохранили кольцевую ДНК и собственные бактериальные рибосомы, а у глаукофитовых водорослей пластиды-цианеллы имеют даже муреиновую клеточную стенку, типичную для бактерий.

Сейчас митохондрии нужны нам как органеллы, которые умеют с использованием кислорода производить АТФ, то есть батарейку – отличный переносчик энергии. Изначально же, скорее всего, они просто поглощали ужасный кислород и тем защищали архейную клетку от отравления. Потом оказалось, что при утилизации яда выделяется немало энергии, которую можно использовать на мирные цели. Митохондрии у всех эукариот одинаковые, так что были включены в наш состав лишь однажды.

Как вы там, потомки?

С пластидами сложнее – они были обретены как минимум дважды: некими зелёными водорослями и отдельно амебоидом Paulinella. Далее пластиды бурно эволюционировали, так что сейчас существует великое их разнообразие, из которого каждому школьнику близки, конечно, хлоропласты. Довольно быстро возникли красные водоросли, а после пластиды передавались от одних эукариот другим путём вторичного и третичного эндосимбиоза, когда новые халявщики поглощали уже эукариотические красные и зелёные водоросли или даже тех, кто поглотил их до этого, образуя хитрые матрёшки, из которых самой замечательной является, конечно, динофлагеллята Durinskia, включающая в себя как минимум пять организмов. Кроме того, сейчас известна масса существ, в которых цианобактерии и водоросли живут как симбионты, но ещё не достигли такой степени консолидации с хозяином, чтобы называть их пластидами: лишайники; золотые медузы Mastigias papua и лунные медузы Aurelia с водорослями-зооксантеллами Symbiodinium; черви-турбеллярии Convoluta с зоохлореллами; слизни Elysia chlorotica, поедающие водоросли Vaucheria litorea и оставляющие себе их хлоропласты (причём геном слизня кодирует некоторые белки, необходимые хлоропластам для фотосинтеза); моллюски тридакны с зооксантеллами и многие прочие. Некоторые пластиды, напротив, эволюционировали намного дальше: у динофлагелляты Kryptoperidinium они превратились в светочувствительный глазок, у споровиков Toxoplasma gondii и Plasmodium falciparum стали апикопластами – синтезаторами жирных кислот.

На самом деле, всё было ещё чуточку хитрее. В нашем ядерном геноме есть гены, кодирующие бактериальные белки, но они не митохондриальные и не пластидные. Похоже, наш предок был горазд хватать всех подряд и приспосабливать к своим надобностям. Была даже версия, что жгутики – это тоже наполовину переваренные бактерии, от которых сохранился лишь «хвостик»; впрочем, при дальнейшем изучении бактериальный и эукариотический жгутики оказались слишком различными; а жаль, гипотеза была красивая.

Смешение происходило в обе стороны: митохондрии и пластиды сдали часть своих генов в ядро на хранение, так как под защитой двойной ядерной мембраны безопаснее и надёжнее. При этом часть митохондриальных генов кодируют белки цитоплазмы. Впрочем, смешение архей и бактерий так и не завершилось до сих пор: при повреждениях митохондрий наша иммунная система реагирует на них, как на болезнетворных бактерий, поэтому раны могут воспаляться даже без всякого внешнего заражения.

Собственно, именно проблемы и противоречия тесного взаимодействия архейного и бактериального геномов вызвали возникновение клеточного ядра. Появление ядерной мембраны – отдельная загадка. Самая простая гипотеза: архея, поглощавшая митохондрий, должна была защищаться от них, для чего впячивала со своей внешней мембраны карманы (они, собственно, ныне и являются наружной мембраной митохондрий), а часть таких окружила собственную ДНК археи, став ядром. Есть и обратная экзомембранная версия: не ядро было включено внутрь клетки, а наоборот, исходная двумембранная клетка-ядро выпячивала внешний слой в виде ложноножек для фагоцитоза будущих митохондрий, после чего эти ложноножки сливались и стали нынешней внешней клеточной мембраной.

Существуют и более экзотические идеи. Возможно, сама архея была таким же гостем в клетке, как и митохондрии, и пластиды. Вопрос тогда в том, из кого же получилась собственно клетка? По одной из версий, она возникла из некой бактерии, подобной современным миксобактериям Myxococcales – крупным, с максимальным для бактерий геномом (у Sorangium cellulosum), склонным формировать плодовые тела, способным ползать как поодиночке, так и в составе подвижных колоний, выделяющих общественные экзоферменты (у Myxococcus xanthus). Идея заманчивая, ведь отсюда видится прямой выход на многоклеточность. Проблема в том, что рибосомы и белки нашей цитоплазмы в основе своей всё же архейные. Та же сложность с гипотезой, согласно которой наша клетка – это усовершенствованный планктомицет Planctomycetes (типа современного Gemmata obscuriglobus), ведь эти бактерии обладают внутренними мембранами, в том числе двойной замкнутой, окружающей область с ДНК – нуклеоид. А чем тогда эта структура принципиально отличается от ядра? Более того, с помощью мембран планктомицеты

могут даже захватывать из окружающей среды довольно крупные молекулы, что опять же роднит их с эукариотами; есть и другие специфические сходства. Впрочем, способность впячивать мембраны внутрь себя и даже обособлять их, вероятно, возникала неоднократно; современные Poribacteria тоже имеют внутренние мембранные пузырьки.

Оригинальна вирусная гипотеза происхождения ядра: по ней наш архейный предок был заражён ДНК-содержащим вирусом типа поксвируса Poxviridae (у которых ДНК окружена двухслойной липопротеидной оболочкой и к которым, кстати, относится оспа) или же бактериальная микоплазма Mollicutes съела подобного гигантского вируса.

Как вы там, потомки?

Если предком цитоплазмы была всё же архея – как она выглядела, чем жила? В гидротермальных источниках Атлантического океана найдена современная архея Lokiarchaeum, выделенная в особый тип Lokiarchaeota и по своим ключевым признакам наиболее годная на роль нашего предка. Забавно, что в геноме локиархеума 26 % генов типичны для архей, а 29 % – для бактерий, то есть горизонтальным переносом он нахватался чужого больше, чем оставил своего. При этом локиархеум всё же продолжает быть археей, так как в самоопределении важно не количество, а качество: ключевые параметры задаются именно архейными генами, а не бактериальными. Важнее, что 3,3 % генов близки к эукариотным; особенно существенно, что к ним относятся гены цитоскелета, изгиба мембраны для образования везикул и актин для фагоцитоза. Рибосомы локиархеума тоже максимально похожи на эукариотические. К сожалению, локиархеум пока известен только из геномного анализа, а строение его клеток остаётся неведомым. Было бы крайне любопытно посмотреть, умеет ли он вытягивать ложноножки, делать пузырьки внутри себя и есть ли у него подобие ядра? Думается, скоро мы это узнаем.

Как бы ни возникли эукариоты, у них были проблемы с взаимодействием разнородных частей. Это решалось оттачиванием регуляторных генетических комплексов, столь пригодившихся потом и при возникновении многоклеточности.

Как минимум, разнородные составляющие – архейные, бактериальные и, возможно, вирусные – должны были быть разгорожены мембранами-пузырьками. Способность формировать вакуоли стала важнейшим приобретением. У прокариот ДНК болтается прямо в цитоплазме, так что многие реакции, способные поломать генетическую информацию, запрещены. Из-за того же ДНК почти всегда кольцевая – так злым ферментам труднее ухватить кончик молекулы и начать разрушать её, ведь у кольца кончика нет; но из-за кольцевой формы ДНК не может быть длинной, а потому не может кодировать много процессов (другое следствие: у прокариот намного лучше отработаны системы репарации, то есть починки ДНК, ведь она чаще повреждается). По той же причине единого пространства цитоплазмы невозможны и взаимопротиворечащие реакции. У эукариот же появилась возможность изолировать ДНК от опасных биохимических процессов цитоплазмы, а те – друг от друга. Теперь ДНК в спокойствии и под защитой двойной ядерной мембраны смогла стать большой, раскольцеваться, стать линейной, разделиться на множество хромосом, в которых можно закодировать много информации о разных процессах, в том числе взаимоисключающих, но происходящих одновременно и независимо в самостоятельных пузырьках-отсеках. Появилась возможность проводить такие реакции, которые доселе были запрещены, активность метаболизма выросла, возможности жизни несказанно расширились.

Для начала, клетки стали намного – на один-два порядка – больше. Теперь некоторые из них стало можно разглядеть даже невооружённым взглядом. Неспроста в отложениях Франсвиля в Габоне с древностью 2,1 млрд л. н. обнаружены отпечатки вполне макроскопических организмов длиной в десяток сантиметров. Непонятно, кем бы они могли быть, но предполагается, что это были либо многоклеточные, либо синцитиальные (то есть слившиеся из многих клеток) аэробные существа типа амебоидов, которые ползали вверх-вниз по мелководному осадку в поисках пищи. У нас нет строгих доказательств, что габонские существа были эукариотами, но для прокариот они чересчур уж гигантские. Конечно, и среди бактерий есть исполины, как Thiomargarita namibiensis, достигающая от 0,1–0,3 до 0,75 мм, но даже этому суперисключению далеко до франсвильских «псевдочервяков». Другой пример протерозойских титанов – Grypania spiralis из Мичигана в США с древностью 1,87 млрд л. н. (изначально эти слои тоже были датированы 2,1 млрд л. н., но после ошибку исправили) – сантиметровые зигзаги прекрасно видно на красноватых камнях безо всякого микроскопа. Чисто гипотетически грипании могли быть гигантскими бактериями или их колониями, но всё же вероятнее, что это уже эукариотические водоросли.

Парные линейные отпечатки Myxomitodes stirlingensis из формации Стирлинг в Австралии с древностью 2,0–1,8 млрд л. н. длиной от нескольких миллиметров до нескольких сантиметров могут быть следами ползания каких-то многоклеточных или синцитиальных тварей, а дискообразные отпечатки очень похожи на эдиакарских «медузоидов» Aspidella и могут быть их предками.

На самой заре своего существования эукариоты разделились на несколько генеральных ветвей. Когда и как это происходило – толком не понятно, но мы точно знаем, что 2 млрд л. н. уже существовали древнейшие грибы: Petsamomyces polymorphus на Кольском полуострове, Huroniospora microreticulata на границе нынешних Канады и США, 1,43 млрд л. н. – Tappania (они же Germinosphaera) на территории северо-западной Канады, 1,01 – 0,89 млрд л. н. – Ourasphaira giraldae тоже в Канаде. Они предстают в виде мохнатых комочков размеров в десятую долю миллиметра (то есть с толстый волос человека). Современным людям грибы обычно представляются сугубо наземными существами, но нет – появились они в морях, где, кстати, и до сих пор живёт большинство из них. Просто морские грибы крайне плохо изучены, но это не значит, что их нет.

Поделиться:
Популярные книги

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Работа для героев

Калинин Михаил Алексеевич
567. Магия фэнтези
Фантастика:
фэнтези
героическая фантастика
6.90
рейтинг книги
Работа для героев

Законы Рода. Том 11

Андрей Мельник
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Черт из табакерки

Донцова Дарья
1. Виола Тараканова. В мире преступных страстей
Детективы:
иронические детективы
8.37
рейтинг книги
Черт из табакерки

Игра престолов

Мартин Джордж Р.Р.
1. Песнь Льда и Огня
Фантастика:
фэнтези
9.48
рейтинг книги
Игра престолов

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды