Чтение онлайн

на главную - закладки

Жанры

Парадоксы климата. Ледниковый период или обжигающий зной?

Кароль Игорь

Шрифт:

Углеродный цикл – один из основных природных циклов как на Земле, так и во Вселенной, в частности, углекислый газ обнаружен в составе атмосферы Марса и Венеры. Основной запас углерода сосредоточен в недрах Земли, и лишь небольшая его доля («обменный резервуар») участвует в обмене с другими геосферами. Схема цикла углерода на Земле представлена на рис. 11 цв. вклейки.

На ранних стадиях формирования нашей планеты CO2 образовывался в результате процессов окисления как естественный компонент атмосферного воздуха. Позже большая часть изначального количества CO2 в форме известняка CaCO3 и других карбонатов (солей угольной кислоты) была захвачена литосферой.

И

в современную эпоху львиная доля поступающего в атмосферу углекислого газа имеет естественное происхождение, а вклад человека (при сжигании им углеродосодержащих веществ – топлива) во второй половине 1970-х гг. оценивался всего лишь в 4 %.

Атмосферный резервуар углекислого газа во многом определяется биосферой суши с короткоживущей (трава и листва деревьев) и долгоживущей (гумус почвы) составляющими. В целом, по весьма приблизительным оценкам, перегнивание органического материала обусловливает ежегодный выброс 220 миллиардов тонн углекислого газа, еще 330 миллиардов тонн дает океан, вклад вулканов составляет 130–230 миллионов тонн CO2.

Главный атмосферный источник CO2 – дыхание растений (в основном ночью). Снижение же его концентрации происходит в результате фотосинтеза в зеленых частях растений (днем). Поэтому в областях с богатой растительностью (в лесах) максимальная концентрация CO2 бывает рано утром и в конце зимы, а минимальная – в конце дня летом и осенью. При этом отклонение от среднего ее значения (амплитуда колебаний) составляет 10–15 %. Значительный источник CO2 в атмосфере – гниение растительности (в частности, опавших листьев) и других органических остатков составляющих углеродного цикла. Таким образом, в лесах, неспроста называемых «легкими планеты», углекислый газ не только разрушается, но и образуется.

Вклад в продукцию CO2, наряду с сезонным листопадом, вносят процессы старения и деградации лесных массивов, болезни растений, а также выгорание лесов в результате пожаров. Следовательно, бесперебойность «дыхания» планеты напрямую зависит от состояния ее «зеленого моря» (неслучайно 2011 г. был объявлен ООН Международным годом защиты лесов). В первую очередь это относится к вечнозеленым тропическим и субтропическим лесам, однако и вклад растительности России также достаточно весом (приблизительно 20–30 %).

Важную роль в углеродном цикле играют болота и зоны вечной мерзлоты, которые аккумулируют углерод в торфе и мерзлом грунте, но высвобождают CO2 при осушении болот и таянии мерзлоты. Нельзя не упомянуть о других «носителях» углерода. Среди несметного их числа выделим метан (о нем наш рассказ впереди) и монооксид углерода СО (угарный газ). Антропогенные выбросы СО примерно в 1,5 раза превосходят его естественную эмиссию, при этом около 60–80 % такого угарного газа обусловлены автомобильным транспортом. Как метан, так и монооксид углерода, вступая в химические реакции с OH-радикалами, окисляются в атмосфере до CO2.

Сам же углекислый газ химически малоактивен, лишь в стратосфере его молекулы разрушаются под действием ультрафиолетового излучения, но процесс этот протекает настолько вяло, что им обычно пренебрегают. Последнее обстоятельство решающим образом определяет характерное время пребывания молекулы CO2 в атмосфере («время жизни»): по современным оценкам, оно близко к ста годам.

Океанический резервуар CO2 пополняется при растворении углекислого газа в воде с образованием угольной кислоты и продуктов ее диссоциации (распада). Растворимость CO2 в воде увеличивается с уменьшением ее температуры и, наоборот, падает с ее увеличением (наглядный тому пример – появление пузырьков газа на стенках стакана

с газированной водой при ее согревании – знаком, несомненно, каждому). Поэтому на зиму углекислый газ «отправляется погостить» из атмосферы в океан через холодные моря и реки Севера и возвращается в атмосферу летом из теплых вод и южных рек. Много углекислого газа выбрасывает Тихий океан при явлениях Эль-Ниньо. Растворимость CO2 зависит также от состава воды и от уровня ее кислотности (pH). Часть оказавшегося в морской воде углерода связывается, образуя соли угольной и серной кислот, и в последующем участвует в гидрохимических преобразованиях. В морской воде мелкие и мельчайшие водоросли (фитопланктон) поглощают растворенный CO2 в процессе фотосинтеза, затем по пищевым цепочкам углерод переходит в зоопланктон и в организмы морских животных, а в дальнейшем выпадает на дно океана с их отмершими частями и продуктами жизнедеятельности. Молекулы карбоната кальция (CaCO3) из донных отложений при некоторых условиях могут снова переходить в воду и участвовать в гидрохимических процессах. Кроме того, карбонатные породы литосферы при выветривании горных пород способны растворяться в воде, создавая значительный по величине потенциальный источник CO2, замыкая круговорот углерода в природе.

Обратите внимание, что наш рассказ об углекислом газе почти не содержит количественных оценок, характеризующих обсуждаемые процессы, и тем более – их взаимосвязь. Это, безусловно, не случайность, а отражение уровня современных знаний об углеродном цикле. Проблемы, возникающие при его изучении, те же, что и при исследовании климатической системы в целом. О них мы говорили выше, и повторяться нет особого смысла. Однако к тому, чтобы численно охарактеризовать изменения концентрации CO2 в воздухе, нет никаких препятствий.

На рис. 15 и 16 видно, как изменялась концентрация CO2 в различные эпохи истории Земли (на врезке – за последнее тысячелетие) и за последние 50 лет. Важно отметить, что за четыре последних ледниковых и межледниковых периода она не превосходила 300 ppm (англ. рarts per million, или «частей на миллион», т. е. молекул CO2 на миллион молекул воздуха), а именно: 270–290 ppm в межледниковые и 190–200 ppm в ледниковые периоды.

В настоящее время средняя по земному шару концентрация CO2 достигает 392 ppm, а в доиндустриальный период она находилась на уровне межледниковой (около 280 ppm) и была почти на треть ниже современной.

Концентрация эта, вследствие химической пассивности CO2, почти не зависит ни от географических координат точки на земном шаре, ни от высотного уровня. Поэтому в большинстве исследований она принимается одинаковой во всей атмосфере Земли.

Рис. 15. Изменения концентрации углекислого газа в палеоэпохи

Даже беглого взгляда на рис. 15 достаточно, чтобы отметить ускоренный рост концентрации CO2, за последние 50 лет: ежегодно в среднем на 1 ppm или приблизительно на 0,3 % в год в 1960–1980-х гг., а с конца 2000-х – до 2,2 ppm или 0,6 %. Считается, что небывалый рост связан с интенсификацией антропогенной деятельности, хотя существуют и другие версии. Согласно имеющимся версиям, подобное можно объяснить:

а) уменьшением содержания углекислого газа в поверхностных водах или уменьшением поглощения CO2 поверхностью океана (например, из-за увеличения температуры);

б) вызванным чем-то ускорением окисления отмершей растительности;

в) вызванным чем-то сокращением скорости фотосинтеза или усилением дыхания растений;

г) увеличением масштабов окисления углерода из-за сжигания человеком углеродсодержащего топлива.

Рис. 16. Изменения концентрации углекислого газа за последние 50 лет

Поделиться:
Популярные книги

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали