Чтение онлайн

на главную - закладки

Жанры

Парадоксы ракеты. Еще о парадоксах ракеты
Шрифт:

Некоторые читатели выражают недоумение по поводу парадокса массы ракеты и массы топлива. Автор привел случай, когда тяжелая ракета может взлететь выше легкой и когда расходование топлива становится менее выгодным, чем сохранение его в качестве дополнительной массы, накопившей энергию и живую силу во время полета. Этот частный случай некоторые читатели приняли за общий закон и сделали совершенно неправильный вывод, будто всякая тяжелая ракета всегда взлетит выше, чем легкая.

Однако автор статьи «Парадоксы ракеты» такого закона не предлагал, а только разобрал особые случаи и особые условия, при которых полет ракеты может совершаться в кажущемся противоречии с установленными законами физики. Эти

отступления возможны только для тех ракет, при конструировании которых не учтены все особенности ракетного двигателя. При всех расчетах и выводах, приводимых в статье, автор оперирует именно с такими ракетами. Само собой разумеется, что с правильно рассчитанными и построенными ракетами ничего парадоксального не случится.

Парадокс направления вызвал еще более оживленный обмен мнениями. В редакцию поступило много писем, опровергающих положения автора. Ученики 91-й школы г. Москвы пишут: «Когда мы проверяли автора, делая вычисления скоростей ракеты, свободно падающей вниз и пущенной с высоты 4 километров вертикально вверх, у нас получался результат, целиком совпадающий с выводами автора. Но если мы складывали не скорости, а энергии, то получали совсем другой результат: обе ракеты должны взлететь на одинаковую высоту».

Это письмо школьников правильно вскрывает тот момент, который позволит нам объяснить все кажущиеся противоречия здравому смыслу. В парадоксе направления говорится о том, что ракета, запущенная с высоты 4 километров вертикально вверх, взлетит на меньшую высоту, чем такая же ракета и с таким же запасом топлива, но предварительно сброшенная в четырехкилометровую пропасть. Подчеркиваем, что непременным условием парадокса ставится: 1) поворот ракеты в противоположную сторону с сохранением живой силы, накопленной ракетой во время ее падения в пропасть, и 2) отсутствие сопротивления воздуха.

В классической механике существует закон, согласно которому работа сил любого поля, в том числе и поля земного тяготения, не может увеличить кинетическую энергию тела, перемещаемого силами поля в границах эквипотенциальной поверхности. В применении к нашему случаю это значит, что ракета при падении с четырехкилометровой высоты хотя и приобретает некоторую энергию, но весь этот запас она израсходует для того, чтоб вернуться на прежний уровень. А из этого следует совершенно бесспорное положение, что сила земного тяготения не может увеличить энергию нашей ракеты.

Все сказанное совершенно правильно, но лишь в случае выключенного двигателя. Правильны также и все положения статьи. Pакета, брошенная предварительно вниз, взлетит на 12 километров выше, чем ракета, запущенная вертикально вверх. Кажущееся противоречие с законами физики существует только для тех, кто не учитывает особенностей ракетного двигателя. Вспомним эти особенности.

Как известно, движение ракеты происходит вследствие того, что некоторая масса газов (продуктов сгорания топлива) с большой скоростью вылетает из сопла ракетного снаряда. Но ракета и газы составляют общую систему из двух тел. В этом случае, согласно закону Ньютона, ракета получает импульс (толчок) в противоположную истечению газов сторону. Она начнет удаляться от общего для обоих тел центра тяжести. Спустя одну секунду скорость движения ракеты будет во столько раз меньше скорости вылетевших газов, во сколько раз ее масса больше их массы. Так объясняет механика полет ракеты. Теперь рассмотрим энергетическую сторону движения ракеты. Горючее, находящееся на борту ракеты, хранит в себе некоторый запас термохимической энергии. При сгорании топлива эта энергия освобождается и сообщает ракете поступательное движение. Одинаковые количества определенного топлива всегда имеют и одинаковые запасы термохимической энергии. Поэтому многие товарищи, приславшие свои письма в редакцию, рассуждали так: раз запасы энергии в обеих ракетах одинаковы и раз эта энергия целиком расходуется на движение снаряда, то мы ни в коем случае не можем

получить никакого выигрыша ни в скорости, ни в потолке ракеты. Вот тут-то и скрывается источник всех недоразумений. На самом деле далеко не вся энергия топлива расходуется на движение ракеты, большое количество ее пропадает зря.

Для того чтобы ракета начала движение вперед, частицы газов должны вылетать из ее сопла назад. За счет чего же эти частицы приобретают свою скорость? За счет термохимической энергии топлива. Таким образом, эта энергия делится на две части. Одна часть ее идет на то, чтобы сообщить движение газам, а другая сообщает поступательное движение ракете. И чем больше энергии пойдет на движение ракеты, тем больше будет коэффициент полезного действия ракетногo двигателя. Наоборот, чем больше энергии будет затрачено на движение газов, тем меньше будет полезная работа двигателя. Нетрудно догадаться, что наибольший коэффициент полезного действия мы получим в том случае, если вылетающие газы не будут иметь никакой скорости, то есть не будут уносить с собой никакой энергии.

Но возможно ли это? Здесь как будто явное противоречие. Ведь для быстрого движения ракеты надо, чтобы газы вылетали из ее сопла с большой скоростью, а для того, чтобы коэффициент полезного действия ее был возможно выше, нужно, чтобы эти газы имели наименьшую скорость. Однако противоречие здесь только кажущееся. На самом деле такое условие можно легко соблюсти. Пусть скорость истечения газов равна 700 м/сек, как это было принято в статье. Если ракетный двигатель начинает работу в тот момент, когда снаряд стоит неподвижно, то вылетающие из сопла газы уносят с собой наибольшее количество энергии. Наблюдатель, стоящий вблизи ракеты, увидит, как эти газы будут проноситься мимо него с колоссальной скоростью. И пока ракета не достигнет большой скорости, ее коэфициент полезного действия будет очень мал.

Теперь представим себе, что двигатели начали свою работу в тот момент, когда скорость ракеты достигла 700 м/сек. Таким образом, вся система ракета — газ несется вперед с этой скоростью. Газы удаляются от ракеты назад со скоростью 700 м/сек. Но вместе со всей системой они летят вперед с той же скоростью. Фактически газы останутся неподвижными, а ракета будет сначала отлетать от них вперед со скоростью 700 м/сек. А раз по отношению к окружающему пространству частицы газа станут неподвижными, то они не будут уносить с собой никакой энергии. А это, в свою очередь, означает, что вся термохимическая энергия топлива почти нацело превратится в кинетическую энергию движения ракеты. И пока скорость ракеты не достигнет 1000–1100 м/сек, ее коэффициент полезного действия будет близок к единице, то есть максимально высок.

Стало быть, на движение газов ушло относительно мало энергии. Таким образом, хотя термохимической энергии топлива и не прибавилось, но распределилась она по-разному. В первом случае большая ее часть ушла на то, чтобы сообщить газам высокую скорость, а во втором случае — на движение ракеты.

Возвратимся теперь к нашей статье. Газы, вылетевшие из сопла ракеты, запущенной вертикально, унесут с собо большую часть термохимической энергии топлива. Оставшейся энергии хватит лишь на то, чтобы сообщить ракете скорость, при которой она сможет взлететь всего лишь на 9 километров. Если же мы бросим снаряд в пропасть, мы создадим этим наиболее выгодные условия для работы ракетного двигателя: он начнет работать, когда снаряд уже достигнет большой скорости. Израсходованное же на нижнем уровне топливо отдает снаряду, как увидим ниже, часть своей первоначальной потенциальной энергии. Вследствие этого коэффициент полезного действия двигателя сильно повышается. В этом случае газы унесут меньше энергии. Остатка ее будет достаточно, чтобы поднять ракету на высоту 21 километра.

Поделиться:
Популярные книги

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Мастер темных Арканов 5

Карелин Сергей Витальевич
5. Мастер темных арканов
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер темных Арканов 5

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Семь Нагибов на версту

Машуков Тимур
1. Семь, загибов на версту
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Семь Нагибов на версту