Чтение онлайн

на главную - закладки

Жанры

Параллельные миры
Шрифт:

Математическая структура теории начинает играть значительную роль по мере продвижения в область все более фундаментальных и все менее непосредственно наблюдаемых явлений. Появился даже термин — суперструнная революция.

Попытки построить теорию, которая обобщала бы все, что известно о мире, делаются регулярно, однако они обречены на незавершенность. Такая теория все равно будет не совсем общей — она лишь обобщит наши знания на сегодняшнем этапе.

За обобщение электрического и слабого взаимодействия была

присуждена Нобелевская премия 1979 года (теория Вайнберга — Салама). Вероятно, должно обобщаться и треть, е взаимодействие — ядерное (сильное), заодно следует ожидать, что обобщается и четвертое.

Когда говорят о фундаментальной теории, подразумевают квантовую теорию, описываемую уравнениями квантовой механики. Но уравнения, описывающие гравитационное поле (четвертое взаимодействие), — классические, не квантовые. Они приближаются к истинным квантовым уравнениям и перестают работать на очень маленьких расстояниях и очень больших энергиях.

И если с квантованием электромагнетизма ученые справились достойно, то с квантованием гравитации они справиться пока не могут. Разрабатывавшиеся теории оказывались внутренне противоречивыми. Гравитация описывает пространство — время, а не его свойства.

Теория суперструн снимает противоречия. Вместо точечных объектов (частиц) теория струн оперирует протяженными объектами (струнами). Струну можно представлять себе как тонкую нить, способную изгибаться и колебаться. При этом надо помнить, что струна — фундаментальный объект, который ни из чего не состоит (в смысле меньших объектов). Струны могут быть замкнутыми и открытыми. Колебания струны (как колебания струн у гитары) могут происходить с разными частотами (гармониками), начиная с некоторой низшей (основной) частоты.

Фундаментально здесь то, что на достаточно большом расстоянии от струны ее колебания воспринимаются как частицы и колеблющаяся струна с некоторой комбинацией основных гармоник (как и у реальной струны) порождает множество, целый спектр разных частиц. Частицы появляются и выглядят (на большом расстоянии от струны) как кванты известных полей — гравитационного, электромагнитного. Отсюда представление о том, что частицы в квантовых теориях — не кусочки вещества, а определенные состояния более общей сущности — поля. Масса частиц-полей возрастает по мере увеличения частоты породивших их колебаний.

Среди частиц, не имеющих массы, есть кванты электромагнитного и гравитационного полей — фотон и гравитон. Тем самым струны описывают квантовую гравитацию и исправляют противоречия «старых версий» этой теории. Поэтому на больших расстояниях от струны (где еще действует общая теория относительности) наблюдатель увидит лишь поля. На маленьких расстояниях — приблизиться к струне по принципу неопределенности означает вступить с ней во взаимодействие, а при этом она уже выглядит не как точечный объект и требуется полный анализ струны как целого, а не нескольких гармоник.

Но зададимся вопросом: а является ли описание струны последовательно математическим? Для этого нужно строить теорию

струн особым образом.

Итак, теория струн очень быстро приходит к внутреннему противоречию, если только размерность пространства — времени не равна 26. При распространении в пространстве — времени (пока 26-мерном) струна, как объект одномерный, рисует поверхность, называемую мировым листом (по аналогии с мировой линией). Струны могут быть замкнутыми или нет, и мировые листы у них разные.

Двухмерная поверхность мирового листа служит ареной, на которой может что-то происходить. Например, на ней могут жить двухмерные (не наблюдаемые непосредственно) поля. Для них мировой лист вроде своего дома. И свойства струны сильно зависят от конкретных частиц, населяющих это место. Пока струна живет в 26-мерном пространстве, на ней ничего нет, а если что-то появляется, то может оказаться, что струна научится жить в пространстве, меньшем, чем 26-мерное.

Степени свободы этих новых двухмерных полей в определенном смысле играют роль недостающих пространственных размерностей и тем самым в пространствах меньшей размерности восстанавливают 26-мерность. Это если рассматривать так называемую простую, или бозонную, струну.

Есть и еще условия непротиворечивости струнной теории. Низшие гармоники отвечают частицам, не имеющим массы, и оказалось, что у бозонной струны самая низкая гармоника должна восприниматься как частица мнимой массы, названная тахионом. Эти частицы имеют дурную славу, потому что им полагается двигаться со скоростью, превышающей скорость света.

Появление тахионов в физической системе струны приводит к ее нестабильности, а точнее, тахионы очень быстро забирают из системы всю энергию и улетают неизвестно куда. Они сигнализируют, что система нестабильна и распадается на состояния, лишенные тахионов.

Таким образом, теория самых простых (бозонных) струн оказалась нестабильной и должна перестраиваться в более устойчивые образования.

СТРУНЫ

Струны, находящиеся в суперпространстве, называются суперструнами. Чтобы понять, что это такое, надо уяснить смысл термина измерение.

Под измерением понимаются некие характеристики системы. Классический пример — кубики разных цветов. Цвет можно принять за дополнительное измерение к общеизвестным трем — высоте, длине и ширине.

Симметрия же — это инвариантность относительно некоторых преобразований. С повышением температуры системы уровень ее симметричности повышается. Иначе говоря, растет хаотичность, неупорядоченность и уменьшается число параметров, пригодных для описания этой системы. И таким образом, теряется информация, которая позволяет различить две любые точки внутри системы.

Например, на ранних этапах существования физическая Вселенная была очень горячей и в ней существовала симметрия. Но с понижением температуры (сейчас температура Вселенной около трех Кельвинов, а тогда измерялась миллиардами) симметричность нарушается.

Поделиться:
Популярные книги

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Бастард Императора. Том 11

Орлов Андрей Юрьевич
11. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 11

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Идеальный мир для Лекаря 20

Сапфир Олег
20. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 20

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Я – Легенда

Гарцевич Евгений Александрович
1. Я - Легенда!
Фантастика:
боевая фантастика
попаданцы
рпг
фантастика: прочее
5.00
рейтинг книги
Я – Легенда

Княжна. Тихоня. Прачка

Красовская Марианна
5. Хозяюшки
Фантастика:
фэнтези
5.00
рейтинг книги
Княжна. Тихоня. Прачка

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI