ПАРАЛЛЕЛЬНЫЕ (научно-фантастическая повесть)
Шрифт:
Добавим, что трактриса обладает свойствами гиперболы, поэтому геометрию Лобачевского называют ещё и «гиперболической».
Если провести ещё одну параллель со словом «гипербола» в значении «преувеличение», то мы вновь вернёмся к тому, что законы псевдосферы начинаются там, где привычное замкнутое пространство сферы «преувеличивается» до размеров Вселенной.
– Довольный своим юмористическим парадоксом ухмыльнулся математик.
– Как видим в этой «преувеличенной» математической фантазии сумма углов треугольника, нарисованного на поверхности псевдосферы, значительно меньше двух прямых.
В неэвклидовой геометрии имеются попытки
– Обращаю ваше внимание на то, что справочные материалы дают лишь такое, достаточно примитивное, визуальное изображение контакта двух гиперпространств.
Из всего выше сказанного можно сделать только один достоверный вывод – контакты различных по форме пространств должны иметь место в виде точек, линий или плоскостей. Я мог бы и далее развивать известные теоретические концепции, но как математик практик, не вижу в этом никакой пользы для наших работ. Другими словами абсолютно не нужно придумывать себе удобные для математических расчетов псевдосферы, нужно только вообразить себе, что внешняя и вогнутые поверхности одной сферы ЕСТЬ ОДНА И ТАЖЕ ПОВЕРХНОСТЬ.
Или, во всяком случае, они расположены бесконечно близко друг другу. Впрочем, я могу быть абсолютно неправ, поскольку стереотипно понимаю измерение расстояний в стандартных единицах: метрах, километрах, световых годах и прочее.
Он улыбнулся пришедшей на ум мысли и продолжил:
– Я всегда с удовольствием смотрю старые российские мультики. В одном из них слоненок, мартышка и попугай пытаются измерить удава в своих собственных единицах измерения. И всякий раз, к их чрезвычайному удивлению, длина последнего здорово разнилась, хотя сам по себе удав оставался в «норме». Правда ему больше пришлась по вкусу размерность в попугаях, поскольку в этом варианте он был «всё-таки длиннее».
Понимаете в чем тут дело?
Для Вселенной совершенно безразлично, какими стандартами мы её измеряем. Ей, в отличие от удава, это не интересно.
С другой стороны, если мы принимаем безразмерный амер за единицу и структуру пространства, то это самое пространство резонно измерять в амерах, которые могут, видимо, быть и ничтожно малыми и бесконечно большими. Оттого переходная зона может иметь любые размеры, в том числе и Вселенские.
В этом плане меня всегда удивлял парадокс неэвклидовых геометрий, утверждающий, что кривизна пространства возрастает с увеличением его размеров, читай – радиуса. В тоже время соприкасание евклидова и неэвклидова пространств (по этой же теории) возможно при уменьшении «тензора кривизны», то есть кривизны окружности при увеличении её радиуса. Такой нелепости эвклидова геометрия не допускает (смотрите рисунок).
Окружность
в бесконечную линию.
Вот такой парадокс!
Но, а если совсем уж просто, то этот рисунок показывает и путь достижения бесконечно далекой цели. Для этого не обязательно долго, долго двигаться от точки А '' через А' , А до В, В',В'', следует повернуть назад (см. как они фактически замыкаются на окружностях) и ты уже дома. И не только в этом столетии, по летоисчислению теории относительности, а уже просто напросто завтра, а и того лучше – мгновенно…
Крус, сам не ожидая от себя такой залихватости, почесал затылок.
– Я не уверен, что приведенный мною примитив имеет какое-либо фундаментальное значение, но в плане точки отчета и как вариант для проектирования эксперимента принять схему можно.
Авкуб, довольно улыбнувшись рефрену в выступлениях физика и математика, заключил.
– Ну, да ладно, давайте, исходя из предложенных «примитивных» вариантов для проектирования эксперимента, подведем итоги…
Что мы имеем?
Во-первых, мы установили, что все происшедшее не плод «ушибленного» воображения Вана, которое вполне могло возникнуть при падении с высокого операторского кресла.
Во-вторых, самодеятельность Колотура, не самотключившегося (как ему было положено по инструкции) при попытке внешнего воздействия на программу, позволило нам, если не убедиться в существовании параллельного мира, то как – то его себе вообразить.
В-третьих, мы уже кое-что конкретно себе воображаем о конфигурации нашего и смежного пространства.
Вспомните синтез контура первичных «умозаключений» Колотура, посмотрите на его первый рисунок. Красный и зеленый человечки стоят на соответственно окрашенных сферах – плоскостях. Вероятно, мы имеем намек на возможные проявления эффектов гравитации и антигравитации в смежном пространстве, что Колотур представил нам в альтернативных цветах солнечного спектра – красным и зеленым.
В-четвертых, мы, вполне вероятно, наблюдали картину возможного материального перехода (депортации живого существа) между смежными мирами.
И наконец, в-пятых, «Снежный» своим, мягко говоря, не ординарным поведением предостерег своих сограждан, и попутно нас с вами, от чего-то смертельно опасного. Обратите внимание на (как мне представляется) «аннигиляционную вспышку» Колотуровской голограммы при пресечении (переходе) двух альтернативных (по каким–то признаком) пространств друг в друга, через нуль пространства.
И чтобы всем было понятно, что я имею в виду, посмотрите на эту голограмму, которую Колотур выдал в пояснение своим прежним аллегориям,
– Авкуб надел шлем сенсора и в воздухе появилась следующая фигура.
– То, что только «кажется» нашему математику, Колотур, без всякого сомнения постулирует, – продолжал шеф…
– Если поверхность сферы в бесконечности превращается в плоскость, то бесконечное сферическое пространство должно представлять собой безмерный куб, с чем я не могу не согласиться. Это бесконечное пространство Колотур разбивает, исходя из прямоугольной системы координат, условно, на восемь кубов.