Паскаль
Шрифт:
Хотя Декарт и недоумевал, почему так увлекаются задачами, связанными с этой кривой («Как можно поднимать такой шум по поводу открытия вещи настолько простой...»), но, как видно, циклоида была темой, чрезвычайно популярной в научной среде. Не потому ли она и пришла Паскалю сразу на ум, как только ему понадобилось «лекарство»? В бессонную мучительную ночь, заглушая острейшую боль мощной работой интеллекта, безостановочно выдвигающего цепь стройных доказательств, Блез не только решает задачу Мерсенна, но и делает ряд важных математических открытий в области изучения рулетты. «Ум» побеждает «тело», и когда на следующее утро герцог де Роаннец навещает больного, тот, к его немалому изумлению, чувствует себя гораздо лучше.
Паскаль не оказывает сейчас
Эти задачи он включает в циркулярное письмо, которое в июне 1658 года под псевдонимом Амоса Деттонвилля (анаграмма Луи де Монтальта) распространяется среди известных математиков. Большинство задач, как стало известно после выхода письма, уже решил Роберваль, и Паскаль счел необходимым подводить итоги конкурса на основании решения только двух последних вопросов.
На решение задач отводится три месяца, и закрытие конкурса назначено на 1 октября 1658 года. Для премии выделено шестьдесят пистолей, а жюри должен возглавить Каркави.
В научном мире Европы конкурс вызвал большой интерес, но проблемы, поставленные анонимом, поддавались далеко не всем. Слюз справился лишь с одной из задач. Гюйгенс — с тремя первыми и частично с последней, несмотря на то, что он был большим знатоком циклоиды. Но труды «славного Гугения», как его называл Ломоносов, не пропали даром: он изобрел циклоидальный маятник и применил его в часах, показав, что период колебаний не зависит от амплитуды в случае, когда маятник описывает циклоиду, для чего требуется специальное приспособление также циклоидальной формы.
Некоторые ученые не решились прислать свои результаты, считая их несовершенными, а другие, занимаясь поставленными задачами, пришли параллельно к интересным открытиям. Так, например, двадцатишестилетний английский профессор астрономии Рен, будущий королевский архитектор (с его именем связано создание собора святого Павла в Лондоне), хотя и не решил задач, но произвел спрямление циклоиды, то есть определил ее длину. Паскаль высоко отзывался о результате Рена, тем более что в это время сравнение кривых линий с прямыми казалось нелепым, задачи о спрямлении кривых считались необыкновенно трудными и были решены лишь для окружности, параболы и некоторых спиралей.
Письмами от 7 и 9 октября Амос Деттонвилль объявил о закрытии конкурса, а 24 ноября Каркави собрал «людей весьма сведущих в геометрии» для подведения итогов. На победу в конкурсе претендовал известный английский математик Валлис и иезуит из Тулузы Лалуэр. Валлис допустил серьезные просчеты в методе исследования и в самих вычислениях, что заставило жюри отклонить его решение. Англичанин обиделся, считая, что его работу нарочно недооценили. Недоволен он был и тем, что на его просьбы продлить столь неудобный для иностранцев срок конкурса (из-за различных задержек, связанных с почтой) следовали неминуемые отказы. Отношения между Паскалем жюри и вторым претендентом были такими же острыми. Лалуэр решил не все задачи, и его решения были малоинтересными, тем
Решения Паскаля жюри признало наилучшими, и в декабре 1658 года он сочинил «Письмо Амоса Деттонвилля к господину де Каркави», в котором изложил свои результаты и приводящие к ним методы. В следующем году оно пополнилось еще несколькими трактатами, и в печати появляются «Письма Амоса Деттонвилля, содержащие некоторые из его открытий в области геометрии».
О том, что суд жюри был действительно справедливым, свидетельствуют сами результаты и методы Паскаля, всеобщее одобрение и восхищение, которое они вызвали среди европейских ученых. Так, например, в феврале 1659 года Гюйгенс писал Блезу, что хотел бы называться его учеником в науке, где Паскаль продемонстрировал свое явное превосходство над многими. А в июне того же года, характеризуя «Письмо к Каркави», Гюйгенс сообщал Слюзу: «Работа выполнена столь тонко, что к ней нельзя ничего добавить». Действительно, отвечал Слюз знаменитому голландцу, «нельзя отрицать, что прекрасные, изобретательные и тонкие идеи, содержащиеся в этой книге, могут продвинуть вперед геометрию».
И Слюз был прав. Приемы и обобщения анализа бесконечно малых, которые Паскаль использовал в своих трудах по циклоиде, вели к изобретению дифференциального и интегрального исчисления.
Оно открыло целую эпоху в развитии естествознания и стало применяться не только во всех математических дисциплинах, но и повлияло на создание ряда новых разделов математики. Благодаря дифференциальному и интегральному исчислению математика стала гораздо шире проникать в область естественных наук и техники. Таким образом, в истории науки XVII века открытие этого исчисления было важнейшим событием, которое возникло как раз на основе методов исчисления бесконечно малых.
2
Своеобразие и эволюцию новых методов можно проследить, например, по исследованиям Кеплера и Кавальери. Так, Кеплер при определении целесообразной формы... винных бочек, когда при наименьшей затрате материала требуется получить наибольшую вместимость, разбивал идеальную поверхность изучаемого тела на элементарные части, суммировал их и тем самым непосредственно вводил бесконечно малые величины. Он применял способы исчисления бесконечно малых и в астрономических исследованиях.
Если использование этих способов у Кеплера ограничено конкретными задачами, возникавшими в ходе его научной деятельности, то в поисках более общих и систематизированных принципов образования и измерения поверхностей и тел Кавальери ввел и исследовал абстрактное понятие «неделимых». (Подобно Кавальери и независимо от него стал применять неделимые и Роберваль.) Неделимые у Кавальери — это элементы, из которых состоит площадь или объем того или иного геометрического объекта и размерность которых на единицу меньше размерности рассматриваемого объекта. Так, точка является неделимым для линии, прямая — для плоскости и т. д. При этом, например, площадь какой-то плоской фигуры определялась через уже известную площадь другой фигуры в результате сравнения отрезков прямых линий (неделимых), которыми эти фигуры покрывались.