Чтение онлайн

на главную - закладки

Жанры

Паутина жизни. Новое научное понимание живых систем
Шрифт:

Решительная перемена за последние три десятилетия выразилась в осознании того, что Природа, по выражению Стюарта, «безжалостно нелинейна». Нелинейные процессы преобладают в неодушевленном мире в гораздо более значительной степени, чем мы предполагали. Они также являются существенным аспектом сетевых паттернов живых систем. Теория динамических систем — первая математическая система, позволяющая ученым работать со всем диапазоном сложности этих нелинейных феноменов.

Исследования нелинейных систем за последние десятилетия оказали значительное влияние на науку в целом, поскольку заставили нас заново оценить некоторые фундаментальные представления о взаимоотношениях

между математической моделью и теми феноменами, которые она описывает. Одно из таких представлений касается нашего понимания простоты и сложности.

Пребывая в мире линейных уравнений, мы думали, что системы, описываемые простыми уравнениями, отличаются простым поведением, в то время как описываемые сложными уравнениями ведут себя гораздо сложнее. В нелинейном мире — который, как мы начинаем обнаруживать, составляет львиную долю реального мира — простые детерминистские уравнения могут таить в себе неожиданное богатство и разнообразие поведения. С другой стороны, сложное и кажущееся хаотичным поведение может породить упорядоченные структуры, тонкие и изящные паттерны. В теории хаоса сам термин хаос приобрел новое, техническое значение. Поведение хаотических систем не просто беспорядочно: оно проявляет более глубокий уровень паттернового порядка. Как мы увидим ниже, новый математический аппарат позволяет рассмотреть эти глубинные паттерны в явных и отчетливых формах.

Еще одно важное свойство нелинейных уравнений, которое всегда смущало ученых, заключается в том, что точное предсказание часто бывает неосуществимо, даже если уравнения строго детерминированы. Эта поразительная особенность нелинейности обусловила важный сдвиг акцента от количественного анализа к качественному.

Обратная связь и итерации

Третье важное свойство нелинейных систем вытекает из частого возникновения в них процессов с усиливающей обратной связью. В линейных системах малые изменения производят малые эффекты, а значительные эффекты являются следствием либо больших изменений, либо суммы множества мелких изменений. В нелинейных системах, напротив, мелкие изменения могут вызвать драматический эффект, если они многократно усиливаются через обратную связь. Такие нелинейные процессы с обратной связью лежат в основе неустойчивости и внезапного появления новых форм порядка, столь характерных для самоорганизации.

Математически петля обратной связи соответствует особому типу нелинейного процесса, известному как итерация (латинское «повторение»); в этом процессе функция многократно применяется к себе самой. Например, если функция состоит в умножении переменной на 3, т. е. f(x) = Зх, то итерация заключается в многократном умножении. В математике это записывается так:

х -> Зх
Зх -> 9х
9х -> 27х
и т. д.

Каждый из этих шагов называется отображением. Если мы представим себе переменную х в виде числовой оси, то операция х — > Зх отображает каждое число на другое число на этой же оси. В более общем случае отображение, состоящее в умножении х на постоянное число /с, записывается в виде:

х -> kх .

Часто встречаемой в нелинейных системах итерацией, очень простой и в то же время производящей огромную сложность, является отображение:

х – > kх(1 -
х),

где переменная х ограничена значениями от 0 до 1. Это отображение, известное математикам как логистическое, имеет много важных приложений. Его, например, используют экологи для описания роста населения при противоположных тенденциях, и поэтому оно также известно как уравнение роста8.

Исследование итераций разнообразных логистических отображений представляет собой увлекательное упражнение, которое можно легко осуществить с помощью карманного калькулятора9. Чтобы понять существенную особенность этих итераций, снова выберем значение k=3:

х – > Зх(1 - х).

Переменную х можно представить в виде участка оси от 0 до 1, тогда очень просто вычислить отображения для нескольких точек, например

– > 0(1 - 0) =0
0.2 – > 0.6 (1 - 0.2) = 0.48
0.4 – > 1.2 (1 - 0.4) = 0.72
0.6 – > 1.8 (1-0.6) = 0.72
0.8 – > 2.4 (1 - 0.8) = 0.48
– > 3(1-1) =0.

Отметив эти числа на двух участках оси, можно увидеть, что величины от 0 до 0,5 отображаются числами от 0 до 0,75. Таким образом, 0,2 превращается в 0,48, а 0,4 становится 0,72. Числа от 0,5 до 1 отображаются на том же участке, но в обратном порядке. Так, 0,6 превращается в 0,72, а 0,8 становится 0,48. Общий эффект показан на рис. 6-6. Отображение растягивает отрезок от 0 до 1,5, а затем снова сворачивает его так, что значения пробегают от 0 до 0,75 и обратно.

Итерация этого отображения выльется в повторяющееся растягивание и сворачивание операций подобно тому, как пекарь вновь и вновь месит тесто, сворачивая и растягивая его. Эту итерацию очень удачно назвали преобразованием пекаря. По мере того как происходит растягивание и сжимание, соседние точки на отрезке будут все дальше и дальше расходиться, и предсказать, где окажется определенная точка после множества итераций, становится невозможно.

Даже самые мощные компьютеры округляют свои вычисления, ограничивая количество цифр после точки; и после большого количества итераций даже мелкие погрешности округления складываются в значительную неопределенность, исключая любые предсказания. 11реобра-зование пекаря есть прототип нелинейных сверхсложных непредсказуемых процессов, обозначаемых специальным термином «хаос».

Пуанкаре и следы хаоса

Теория динамических систем — математическая теория, позволившая внести порядок в хаос, — была разработана совсем недавно, однако ее основы были заложены в начале XX века одним из величайших математиков нового времени Анри Пуанкаре. Среди математиков своего века Пуанкаре был последним великим эрудитом. Ученый внес весомый вклад фактически во все разделы математики. Собрание его сочинений исчисляется несколькими сотнями томов.

Поделиться:
Популярные книги

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Хозяин Теней 2

Петров Максим Николаевич
2. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 2

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Моя на одну ночь

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
5.50
рейтинг книги
Моя на одну ночь

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Меч Предназначения

Сапковский Анджей
2. Ведьмак
Фантастика:
фэнтези
9.35
рейтинг книги
Меч Предназначения

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Мастеровой

Дроздов Анатолий Федорович
Фантастика:
фэнтези
боевая фантастика
альтернативная история
7.40
рейтинг книги
Мастеровой

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!