Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
Шрифт:
Во время своей второй цюрихской профессуры Эйнштейн занимался разработкой математического аппарата, который был необходим для дальнейшего развития теории относительности и для построения нового, релятивистского учения о гравитации. Его большей частью приходилось создавать заново. Несмотря "а то что Эйнштейн никогда не относился к "хорошим математикам", он становится теперь также усердным и творчески мыслящим математиком.
Математика никогда не была для Эйнштейна самоцелью. В последние годы своей жизни он писал Лауэ: "Удивительна сама по себе возможность математически овладеть предметом, не зная действительного существа дела". Эйнштейна же всегда интересовало в
В выборе необходимых математических методов и в их применении Эйнштейну помогал его соученик Марсель Гросман, который в то время был профессором математики в том же учебном заведении, где преподавал Эйнштейн. Плодом их совместных трудов явилась рукопись "Набросок обобщенной теории относительности и теории гравитации". Математическая часть принадлежала Гросману, физическая - Эйнштейну. Эта работа была второй, после пражской теории, вехой на пути к общей теории относительности и учению о гравитации, которые были в основном закончены в Берлине в 1915 году.
Развитие релятивистского хода мыслей оказалось весьма утомительной, тяжелой и скучной работой. "Математические трудности, на которые наталкиваются, следуя этим мыслям, к сожалению, слишком велики и для меня", - заметил Эйнштейн в одном из писем Маху. Несколько позже, в июле 1913 года, он писал: "Этими днями Вы, вероятно, получили мою новую работу об относительности и гравитации, которая наконец-то готова после бесконечного труда и мучительных сомнений".
Подтверждением высокого авторитета, которым пользовался создатель теории относительности среди физиков, явилось избрание его в 1913 году действительным членом Берлинской Академии наук. Ему было тогда всего лишь 34 года. Он был приглашен занять место великого физико-химика, лауреата Нобелевской премии Вант-Гоффа, место, которого напрасно добивался Рентген.
Предложение о приглашении Эйнштейна исходило от Планка. "Вы решительно способствовали моему внешнему продвижению и тому, что я получил такие условия работы, которые даются лишь немногим", - говорил Эйнштейн Планку в 1929 году, вспоминая свое приглашение в Берлин. Планк лично вместе с Нернстом ездил в Цюрих, чтобы склонить Эйнштейна принять место.
В Берлине Эйнштейн мог посвятить себя исключительно своим теоретическим исследованиям. Физический институт Общества кайзера Вильгельма по поощрению наук, которым он должен был руководить, существовал тогда только на бумаге. Он был основан в 1917 году, но лишь 20 лет спустя, когда Эйнштейн уже вновь покинул Берлин, получил собственные рабочие помещения. Эйнштейну было предоставлено право читать лекции и вести семинары по избранным им самим темам, не будучи обязанным принимать участие в каких-либо учебных мероприятиях или факультетской работе.
Таким образом, ему открывалось поле деятельности, которая наилучшим образом соответствовала его научным потребностям и его личным желаниям. Это побудило его преодолеть свое политическое неприятие империалистической Германии, от которой он отвернулся еще будучи школьником, принять избрание в Прусскую Академию наук и переехать в Берлин. Жена Милева и сыновья остались в Швейцарии.
В начале апреля 1914 года Эйнштейн приступил к своей новой службе "как академический муж без каких-либо обязанностей, нечто вроде живой мумии", писал он в характерном для него стиле одному из своих друзей.
Девятнадцать лет провел великий физик в Берлине. Он читал лекции в университете, вел семинары вместе с Максом фон Лауэ, Вильгельмом Вестфалем
Эйнштейн в свои берлинские годы меньше всего походил на "живую мумию". Первые три года, несмотря на военные события, которые отрицательно сказывались "а научной работе, были необычайно плодотворными. В 1915 году после семилетних трудов Эйнштейн закончил свою общую теорию относительности и учение о гравитации, он внес существенные дополнения в квантовую теорию и обосновал совершенно новый взгляд на строение вселенной.
Общая теория относительности, бесспорно, является гениальнейшим творением Эйнштейна. Макс Борн назвал ее "наиболее великим достижением человеческого мышления в знании природы, удивительным соединением философской глубины, физической интуиции и математического мастерства". Она является открытием, в наибольшей степени принадлежащим Эйнштейну, поскольку в отличие от специальной теории относительности общую теорию относительности не предваряли готовые элементы физического знания и не существовало также никаких конкретных теоретических предпосылок ее, кроме нескольких идей Римана и Маха. Здесь прежде всего следует упомянуть "принцип Маха", как Эйнштейн называл объяснение инертности действием масс отдаленных небесных тел: в честь исследователя, который предложил это толкование.
По убеждению Эйнштейна, австрийский физик был уже почти за полстолетия до него близок к раскрытию общей теории относительности и, вероятно, нашел бы ее, если бы в те десятилетия вопрос о значении постоянной скорости света был поставлен физиками в той же форме, как это было сделано позже. Критические взгляды Маха на ньютоновский закон инерции Эйнштейн считал доказательством того, "как близко лежала идея Маха к требованию относительности в общем смысле (относительности ускорений)".
Общая теория относительности ставит очень высокие требования к возможностям абстрагирования в геометрии и физике. Она использует особые математические методы, которые доступны только специалистам. Сам Эйнштейн должен был преодолеть здесь значительные трудности. При создании общей теории относительности он, по словам Лауэ, следовал указаниям компаса математики, который мог в известной мере обеспечить сохранение избранного направления, но был совершенно недостаточен для точного определения пути. Эйнштейн в конце концов нашел этот путь, не избежав случайных кружных и неверных дорог. В том, что он все же пошел этим путем, его величайшее достижение, не имеющее себе равных в истории физики.
Принцип относительности, справедливость которого в специальной теории относительности ограничена инерциальными системами - равномерно движущимися относительно друг друга системами, в которых действует ньютоновский закон инерции, - справедлив в общей теории относительности также для систем, движущихся с ускорением, и для вращательных движений.
Общую теорию относительности Эйнштейн рассматривал как "второй этаж" в здании своей теории. В сходном смысле Планк сравнивал переход от специальной к общей теории относительности с переходом от линейных функций ко всеобщей теории функций в математике. Общая теория относительности тем самым включает - если отвлечься от гравитации - специальную как частный случай. Она является как бы расширением и обобщением принципа относительности 1905 года.