По следам бесконечности
Шрифт:
Трудно сказать, проверял ли Эйнштейн выводы Фридмана с карандашом в руках. Скорее всего, бегло. Должно быть, великий физик положился на интуицию, а она подсказывала, что ничего подобного не может быть: ведь нестационарная Вселенная Фридмана противоречила его собственной стационарной модели.
Но как бы там ни было, Эйнштейн, ознакомившись со статьей Фридмана, поместил в очередном номере «Физического журнала» коротенькое замечание, в котором категорически заявлял, что результаты Фридмана вызывают серьезные сомнения и скорее всего неверны.
Прочитав это, Фридман написал Эйнштейну подробное письмо, в котором обстоятельно излагал существо своей работы. На этот раз великий физик
Возможно, другой на его месте из принципа продолжал бы отстаивать свое первоначальное мнение или, в лучшем случае, просто промолчал. Но Эйнштейну была абсолютно чужда какая бы то ни было амбиция, увы, нередко застилающая глаза маститым ученым. Самой главной целью его жизни было познание реальной природы, и потому он никогда не упорствовал в своих ошибках. Не имело значения, что ошибся он сам, было гораздо важнее, что ошибка исправлена и тем самым внесено что-то новое в наши знания о мире.
И 13 мая 1923 года в редакцию «Физического журнала» поступило письмо Эйнштейна, которое и было вскоре опубликовано под заголовком «Заметка о работе А. Фридмана о кривизне пространства».
«В предыдущей заметке я критиковал названную работу, — писал Эйнштейн. — Однако моя критика, как я убедился из письма Фридмана, основывалась на ошибках в вычислениях.
Я считаю результаты Фридмана правильными и проливающими новый свет. Оказывается, что уравнения поля допускают наряду со статическими также и динамические (т. е. переменные относительно времени) центрально-симметричные решения для структуры пространства».
Любопытно: как выяснилось позднее, и статическая модель Эйнштейна тоже неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная должна обязательно либо расширяться, либо сжиматься.
Физикам и астрономам стало ясно, что уравнения Эйнштейна имеют решения, описывающие мир, геометрия которого меняется с течением времени. При расширении средняя плотность вещества постепенно убывает, а следовательно, меняется и кривизна пространства.
Приверженность А. Эйнштейна к модели стационарной Вселенной, мешавшая ему разглядеть столь важное свойство выведенных им же самим уравнений, имела свои объективные причины. Идея стационарности была в то время чем-то само собой разумеющимся. С одной стороны, она опиралась на представления о так называемых «неподвижных» звездах [12] , а с другой — на все еще существовавшую веру человечества в стабильность мирового порядка.
12
Далекие звезды, которые благодаря огромным расстояниям от Земли кажутся земному наблюдателю неподвижными друг относительно друга.
Таким образом, заслуга Фридмана состояла не только в том, что ему удалось преодолеть предвзятую точку зрения создателя теории относительности, но прежде всего в том, что он сумел отказаться от традиционного взгляда на мир.
Независимо от теоретических исследований Фридмана, американский астроном Слайфер обнаружил в спектрах галактик «красное смещение». Подобное явление, известное в физике под названием эффекта Доплера, наблюдается в тех случаях, когда расстояние между источником света и приемником увеличивается.
Вообще эффект Доплера сопутствует любому волновому процессу, в частности, распространению звуковых колебаний. Вероятно, каждый не раз отмечал, что звук свистка приближающегося электровоза резко понижается, как только, промчавшись мимо, он начинает быстро удаляться.
В
Через несколько лет после открытия Слайфера другой американский астроном Хаблл выяснил, что чем дальше расположена от нас галактика, тем сильнее сдвиг линий в ее спектре. Мало того, обнаружилась почти пропорциональная зависимость между расстояниями и величиной красного смещения.
С точки зрения принципа Доплера это означает, что все галактики удаляются и чем дальше расположена та или иная галактика, тем быстрее она движется.
На основании картины движения галактик, полученной в результате объяснения красного смещения с помощью эффекта Доплера, физики и астрофизики разработали теорию «расширяющейся Вселенной», согласно которой несколько миллиардов лет назад материя Вселенной была сосредоточена в сравнительно небольшом объеме, где она находилась в состоянии сверхчудовищной, может быть, бесконечно большой плотности. Затем по неизвестной причине началось расширение этого объема, своеобразный космический взрыв, в результате которого в конечном итоге образовались космические объекты — звезды, галактики, планетные системы. Расширение продолжается и по сей день. В каждый данный момент Вселенная обладает конечным объемом, радиус которого все время возрастает.
Что же касается кривизны пространства, то в случае расширяющейся Вселенной она оказывается непосредственно связанной со значением средней плотности материи и так называемой постоянной Хаббла, показывающей зависимость скорости разбегания галактик от расстояния.
Кроме того, средняя плотность материи в однородной Вселенной Фридмана определяет не только ее геометрию, но и ее будущее.
Подсчеты показывают: при средней плотности вещества, превосходящей 610– 29 граммов на кубический сантиметр, что соответствует 10 атомам водорода в каждом кубическом метре, пространство замкнуто и конечно. А расширение замкнутого сферического неэвклидового трехмерного мира должно быть рано или поздно остановлено тяготением и перейти в сжатие.
Если средняя плотность в точности равна критической — этот случай был подробно рассмотрен в 1932 году Эйнштейном и де Ситтером, — расширение Вселенной происходит неограниченно, а ее пространство является эвклидовым и бесконечным.
Наконец, при плотности, меньше критической, пространство тоже бесконечно, но является уже не эвклидовым, а пространством Лобачевского.
Однако это лишь различные теоретические возможности. А как определить среднюю плотность всех существующих форм материи: звезд, межзвездного водорода, электромагнитного излучения, потоков «неуловимых» частиц нейтрино, межгалактического газа, который главным образом состоит из водорода и гелия, и так далее…
Задача весьма непростая, если учесть, что за этим «и так далее» скрываются такие виды материи, которые трудно наблюдаемы, а кроме того, могут в принципе существовать и такие ее формы, о которых мы вообще не имеем пока ни малейшего представления. А это значит, что по крайней мере при современном уровне знаний о Вселенной, у нас нет достаточных оснований для того, чтобы отдать предпочтение одной из существующих возможностей. Чтобы сделать такой выбор, необходимо располагать гораздо более точными оценками средней плотности материи в космических масштабах.