По законам логики
Шрифт:
Однако матери это рассуждение не показалось убедительным.
— Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой.
Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка или, напротив, чтобы не отдавать его? И к тому и к другому одновременно. Это обещание внутренне противоречиво, и, таким образом, оно невыполнимо в силу законов логики.
ПАРАДОКС РАССЕЛА
Самым знаменитым из открытых уже в нашем веке парадоксов является антиномия,
Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы. Этот парадокс вызвал в математике, по мнению Д. Гильберта, «эффект полной катастрофы». Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями.
Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но ив какого места и в каком направлении? Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования?
С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики А. Френкель и И. Бар-Хиллел уже без всяких оговорок утверждали: «Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели».
Современный американский логик X. Карри писал немного позднее об этом парадоксе: «В терминах логики, известной в XIX веке, положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка».
Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса.
Можно говорить о множествах различных объектов, например о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго — каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий.
Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов-это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента.
Очевидно, что каждое множество является либо обычным, либо необычным.
Рассмотрим теперь множество всех обычных множеств. Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то согласно своему определению должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно
Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие. И получено оно на основе самых правдоподобных предположений и с помощью бесспорных как будто шагов.
Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о несуществовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы.
Парадокс Рассела замечателен своей крайней общностью. Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий «множества» и «элемента множества». Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще.
Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства. Это становится очевидным, если переформулировать парадокс в чисто логических терминах.
О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет. Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе. Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, что неприложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально,
Логическая, касающаяся свойств разновидность антиномии Рассела столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность.
Б. Рассел предложил также следующий популярный вариант открытого им парадокса.
Представим, что совет одной деревни так определил обязанности парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно.