Чтение онлайн

на главную - закладки

Жанры

Победители недр. Рассказы (ил. Е.Адамова)
Шрифт:

— Как же из одной и той же изверженной массы образуются разные породы? Ведь они все происходят из одной и той же магмы!

— Но магма состоит из многочисленных и разнообразных элементов. Среди них важнейший — кремнезём. По количеству кремнезёма породы делятся на три группы: кислые породы, в которых кремнезёма содержится больше шестидесяти пяти процентов, — сюда относятся граниты; средние, например диорит, с содержанием кремнезёма от шестидесяти пяти до пятидесяти двух процентов, и основные — габбро, диабазы, базальты, — в которых кремнезёма меньше пятидесяти двух процентов. Наукой установлено, что ещё в глубинах земли в магме могут происходить процессы разделения, обособления этих групп. Тяжёлые кристаллы основных пород вследствие своей тяжести опускаются в нижние слои расплавленной магмы, а более лёгкая магма собирается выше. Если по какой-нибудь причине происходит разлом земной коры и начинается извержение,

эта магма поднимается первой. При этом уменьшается давление в глубинных бассейнах магмы. А при уменьшении давления плавление облегчается…

— Да, да! Я помню! Это мы по физике проходили. Например, на вершинах гор, где давление слабее, вода закипает при меньшей температуре, чем у подножия горы…

— Правильно, Володя! — подтвердил Мареев. — Так вот, при уменьшении давления опустившиеся вниз тяжёлые кристаллы основных пород опять расплавляются и смешиваются с оставшейся магмой, но она содержит уже меньше кислых пород и больше основных. Потом история повторяется: пары и газы в закрывшемся бассейне продолжают выделяться, давление возрастает, тяжёлые кристаллы основных пород опускаются, теперь вверху собираются средние породы. Лишь в третью очередь из бассейна появляются на поверхности, или близко к ней, тяжёлые основные породы… Всё это я немного упростил, чтобы дать тебе схематическое представление о процессе образования различных горных пород, руд и минералов из одной общей магмы.

В люке показалась голова Брускова. Он подозрительно посмотрел на Мареева.

— Опять геология? — спросил он, подходя к столу. — Мало тебе, Никита, учебных часов? Ведь у нас теперь с ним практические занятия…

Мареев рассмеялся.

— Ну, что я могу поделать? Он мне проходу не даёт своими вопросами.

— Я только на минуточку оторвался от модели, — вмешался Володя, виновато подняв глаза на Брускова. — Завтра я обязательно начну спайку пластин.

— Ну, то-то же! — проворчал Брусков, возвращаясь в шаровую каюту.

Как только он исчез, Володя опять повернулся к Марееву:

— Никита Евсеевич, ещё один вопрос… Как происходят извержения этих пород? Через вулканы?

— Только один вопрос? — Мареев улыбнулся. — На этот вопрос можно так ответить, что ты не окончишь своей модели ни завтра, ни послезавтра, ни через неделю.

— Нет, нет! — засмеялся Володя. — На ответ даётся десять минут. Подробности мы будем скоро проходить по курсу. А сейчас хочется хоть немного разобраться…

— Ну, ладно, пользуйся, — у меня есть ещё немного свободного времени. Ты говоришь, через вулканы? Конечно, и через вулканы, но часто магма пробивалась на поверхность и через разломы, через трещины в земной коре, а иногда она и сама подымала, вспучивала и взрывала лежащие над нею толщи. Нередко, подымаясь огромными массами к поверхности, изгибая и ломая встречающиеся пласты, она постепенно, ещё не дойдя до поверхности, сама остывала, образуя гигантские подземные горы из гранита, базальта, габбро, диорита и других изверженных пород. Такие подземные горы, не имеющие предела внизу, называются батолитами. От них, ещё до полного остывания, нередко отделялись более или менее значительные жилы, по которым магма пробивалась выше, образуя среди пластов как бы шляпку гигантского гриба. Такие грибы называются лаколитами. Иногда магма застывала в толще земной коры в виде бесформенных масс, называющихся штоками. Огромный жар магмы, доходивший до полутора тысяч градусов, и давление, которое она развивала при этом, оказывали такое влияние на окружающие осадочные породы, что они в местах соприкосновения с магмой, в местах контакта, и на известном расстоянии от неё совершенно меняли свою структуру, свой внутренний состав. Известняки, например, превращались в мрамор, песчаники — в кварциты, мергель — в хлоритовый сланец, каменный уголь — в кокс. Такое внутреннее изменение состава породы под влиянием расплавленных масс магмы называется контактовым метаморфизмом. Когда магма несколько остынет, проявляется другой вид метаморфизма — гидротермальный. Здесь изменение окружающих пород производится выделяющимися из полуостывшей магмы газами и водяными парами, превращающимися потом в горячую воду. Эта глубинная вода называется ещё ювенильной, юной, потому что она появилась из глубоких недр земли, а не из атмосферы и не с поверхности земли. Так вот, эти газы и воды содержат в себе много важных веществ: соединения железа, меди, серебра, олова, свинца, ртути. Из области контакта эти газы и воды проникают далеко в толщу пород через мелкие трещины и поры и откладывают там содержащиеся в них вещества, образуя разнообразные рудные месторождения: железные, медные, серные, оловянные. Добравшись до поверхности, эти газы растворяются в атмосфере, а ювенильные воды образуют горячие минеральные источники.

— Но откуда же в магме вода?

— В магме

заключены все элементы, какие только существуют в природе. Там в изобилии находится кислород…

— Он составляет сорок семь процентов веса всей земной коры, — подхватил Володя.

— Правильно!.. Затем там имеется водород…

— А его много?

— Нет. По сравнению с кислородом очень мало, меньше одного процента. Ну, вот, раз они имеются там, в магме, то, выйдя из неё и соединившись, они образуют воду. И вода и газы находятся повсюду — и в атмосфере, и на поверхности земли, и в жидкой магме, и даже в самых твёрдых горных породах.

— Даже в такой, как гранит?

— Да, даже в граните. Французский учёный Арман Готье произвёл ряд очень интересных опытов и выяснил, что один килограмм гранита, раскалённого докрасна, выделяет десять граммов воды и такое количество газов, которое раз в шесть или семь превышает объём этого гранита. Следовательно, один кубический метр гранита, весящий две тысячи шестьсот шестьдесят четыре килограмма, даст двадцать шесть тысяч шестьсот сорок граммов воды, а один кубический километр — двадцать шесть миллионов сорок тысяч тонн, или больше двадцати шести миллионов кубических метров воды. Одновременно из того же кубического километра гранита выделится около семи миллиардов кубических метров газов, а по другим расчётам — даже втрое больше. Чтобы ты мог легче представить себе, что значат эти цифры, вспомни, что за весь 1933 год в СССР было добыто нефти двадцать семь миллионов тонн, а если возьмёшь карандаш и подсчитаешь, то увидишь, что из воды, заключающейся в одном кубическом километре гранита, может образоваться озеро длиной в два с половиной километра, шириной в километр и глубиной в десять метров. В таком озере могли бы свободно плавать настоящие морские пароходы.

— Столько воды в граните?! В граните?! — поражался Володя. — Просто не верится, Никита Евсеевич!

— Приходится верить, Володя, — улыбнулся Мареев и, посмотрев на часы, добавил: — Ну, мне пора. Надо сменить Михаила. Как подвигаются дела с моделью?

— Да я её уже наполовину сделал!

— Когда кончишь, обязательно устроим торжественный пуск вашей маленькой подземной термоэлектростанции. А чем вы будете охлаждать первый спай?

— Жидким кислородом.

Мареев поморщился.

— Жидким кислородом? — переспросил он. — Гм… А может быть, можно чем-нибудь другим? Ну, например, жидким водородом? У нас его довольно много.

— Я думаю, можно, Никита Евсеевич, только это потребует перерасчётов. А почему не воспользоваться кислородом?

— Да так, знаешь… — уклончиво ответил Мареев, — надо поберечь кислород… Ну, занимайся своим делом.

Володя остался один в “мастерской”, как он называл свой столик в верхней камере, который ему уступили для большого дела, заинтересовавшего всё население снаряда. Володя решил изготовить действующую модель термоэлектростанции. Сам Брусков чрезвычайно увлёкся затеей Володи: модель дала бы ему возможность ещё раз на практике проверить конструкцию термостанции. Володя с жаром принялся за эту работу, постоянно пользуясь консультацией взрослых членов экспедиции. Он успел уже на “отлично” закончить курс ознакомления со снарядом и его механизмами. Освободившееся время он отдавал теперь своей модели.

Оставив Володю, Мареев спустился в буровую камеру, где Брусков сидел за столом, внося последние записи в вахтенный журнал.

— Это ты, Никита? — спросил он, не отрываясь от работы. — Что же это значит наконец? Геотермический градиент совсем не возрастает с глубиной, как ты предполагал. Вот уже целую тысячу метров температура равномерно увеличивается на один градус через каждые тридцать три метра спуска, и этот проклятый градиент совсем не обнаруживает склонности увеличиваться с глубиной.

— Откровенно говоря, мне трудно объяснить этот факт, — сказал Мареев. — Возрастание температуры на один градус должно с глубиной замедлиться. Это твёрдо установившееся среди геологов мнение, и до глубины в девять тысяч сто метров это мнение целиком подтверждалось: если возле шахты “Гигант” в верхних слоях земли геотермический градиент равнялся, в среднем, тридцати с половиной метрам, то на девятом километре температура окружающей нас породы поднималась на один градус уже через каждые тридцать три метра. Значит, геотермический градиент с глубиной действительно возрастал. Теперь он должен был бы, по моим расчётам, равняться примерно тридцати четырём метрам, и почему он остановился — непонятно. Такой глубины, на которой мы сейчас находимся, никто никогда не достигал ни посредством орудий и инструментов, ни тем более лично. Мы впервые получили возможность произвести проверку. И вот оказывается, что на большой сравнительно глубине, на протяжении почти тысячи метров, геотермический градиент остается без изменений! Это любого геолога может озадачить. Неужели закон возрастания будет нами опровергнут?

Поделиться:
Популярные книги

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Новобрачная

Гарвуд Джулия
1. Невеста
Любовные романы:
исторические любовные романы
9.09
рейтинг книги
Новобрачная

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Газлайтер. Том 19

Володин Григорий Григорьевич
19. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 19

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Страж Кодекса. Книга II

Романов Илья Николаевич
2. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга II

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона