Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Если в катушку вдвинуть, а затем вынуть магнит, в цепи возникнут электромагнитные колебания - магнитная энергия будет переходить в электрическую и наоборот. Чем меньше сопротивление проволоки в катушке, тем медленнее будут затухать колебания. Если катушка сделана из сверхпроводника, колебания практически не будут затухать.

Как угадать решение?

Можно иногда выяснить свойства решения, прежде чем будет построена теория, до того как найдены уравнения, описывающие явления. Это пример более сложного анализа размерностей, чем в случае осциллятора.

Одна из труднейших и нерешенных задач теоретической физики - связь гравитационных и электродинамических явлений.

Если

такая связь существует, то в результате решения каких-то еще не найденных уравнений будет получено безразмерное число, дающее соотношение между гравитационной постоянной G и величинами, характеризующими электричество, такими, как скорость света с, заряд электрона е и его масса m. Если существенны квантовые явления, в задачу может войти еще постоянная Планка h , которая, как мы видели, характеризует скачки энергии электромагнитных колебаний. Зная размерности величин G, с, е, m, h, нетрудно убедиться, что из этих величин можно составить только две независимые безразмерные комбинации:

Первая из них хорошо известна и называется «постоянной тонкой структуры». Подстановка числовых значений дает \alpha = 1/137; \ksi = 5\cdot 1044. Может ли такое большое

число, как \ksi, возникнуть в результате решения каких-нибудь разумных уравнений? Безразмерные числа, которые получаются в физических задачах, обычно имеют порядок нескольких единиц или долей единицы. Поэтому мы вправе ожидать, что величина \ksi войдет в задачу в такой форме, чтобы в результате получилось число порядка единицы. Пока мы применяли здравый смысл. Теперь нужно сделать небольшой интуитивный логический скачок.

Правдоподобно, что в теорию войдет натуральный логарифм \ksi (ln(\ksi) ~100) в комбинации \alpha ln(\ksi) ~ 1. В этом соотношении уже нет больших чисел. Знание такого соотношения облегчает поиски решения.

Поправки к электродинамике в сильном поле

Это более сложная задача, которая даст некоторое представление о важном методе современной физики - графиках Фейнмана. Метод графиков или диаграмм совершил революцию в теоретических расчетах. Суть его состоит в том, что явления изображаются в виде рисунков, которые расшифровываются в конце работы. Даже без расшифровки, только как иллюстрация процессов, эти графики многое разъясняют. Например, такой рисунок означает рождение и уничтожение пары электрон -

позитрон фотоном, если под пунктиром понимать квант, а под линиями с разными стрелками - электрон и позитрон. Точки на графике означают акт взаимодействия кванта с электроном. Каждый акт вносит множитель е, а весь график показывает, как изменяется закон распространения электромагнитного поля из-за временного рождения пары электрон - позитрон.

Вакуум представляет собой сложную среду, в которой могут виртуально - на время - рождаться пары частиц - античастиц. Особенно ясно это станет после прочтения следующей главы. Поэтому нет никаких оснований считать, что уравнения Максвелла останутся линейными для сколь угодно сильных полей. Оценим порядок величины поправок к этим уравнениям.

Поправку к уравнениям Максвелла лучше всего

нивать по изменению безразмерной величины - диэлектрической постоянной, скажем, в электрическом поле.

Отчего изменяется диэлектрическая

постоянная, определяющая скорость распространения света в вакууме в присутствии внешнего поля? Ведь внешнее поле на свет не действует. Механизм состоит в том, что свет на время рождает электрон-позитронную пару, а эти частицы уже взаимодействуют с внешним полем.

На рисунке процесс выглядит так:

Этот рисунок показывает, как изменяется во внешнем поле закон распространения фотона.

Квант на время рождает пару, а электрон и позитрон взаимодействуют с внешним полем (волнистая линия). Каждое включение внешнего поля вносит множитель еЕ, где Е - напряженность внешнего поля.

Теперь нетрудно составить безразмерную комбинацию, дающую поправку к диэлектрической постоянной. Сначала составим безразмерную комбинацию, содержащую поле Е. Так как еЕ имеет размерность энергии, деленной на длину, а величина h/mc - размерность длины, то выражение

безразмерно.

Теперь, глядя на рисунок, нетрудно догадаться, как должна выглядеть поправка к диэлектрической постоянной:

где f - произвольная функция. Заряд е входит в первый множитель квадратично, так как предварительно была рождена пара, а поле Е входит в функцию в безразмерной комбинации \beta. При сравнительно малых полях функцию f можно разложить в ряд. Он начнется с члена ~Е2, ведь Е - вектор, а в ответ может входить

только скалярная величина, то есть только квадрат вектора Е.

Итак,

КВАНТОВАЯ ТЕОРИЯ ЧАСТИЦ И ПОЛЕЙ

Декарт научил нас не только сомневаться, но и решать уравнения.

Ж- Фурье

Мы уже много раз поминали всуе знак h - постоянную Планка. Пора приступить к делу и показать не на словах, а на формулах, как эта величина участвует в квантовых явлениях. Одновременно это послужит лучшему пониманию того, что представляет собой качественный анализ и как он работает. Мы получим самые важные соотношения квантовой механики, пользуясь только качественными соображениями, отбрасывая несущественные трудности. Мы найдем уровни энергии атома, вращающегося тела, осциллятора и обсудим следствия применения квантовой механики к электромагнитному и другим полям.

Квантование атома

Согласно квантовой механике энергия электрона в атоме может принимать только дискретные значения.

Возможные значения энергии электрона в поле ядра с зарядом Z (для водорода Z = 1) даются выражением

Разности значений Еп для двух разных п (п = 1, 2, 3…) определяют с большой точностью возможные частоты наблюдаемых на опыте спектральных линий. Эта формула - результат точного решения уравнения Шрё-дингера для волновой функции, описывающей движение электрона. Посмотрим, к чему приводит качественный анализ.

Поделиться:
Популярные книги

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Новый Рал 4

Северный Лис
4. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 4

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Старая дева

Брэйн Даниэль
2. Ваш выход, маэстро!
Фантастика:
фэнтези
5.00
рейтинг книги
Старая дева

Волхв

Земляной Андрей Борисович
3. Волшебник
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волхв

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Адвокат вольного города 4

Кулабухов Тимофей
4. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 4

Запределье

Михайлов Дем Алексеевич
6. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.06
рейтинг книги
Запределье

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Квантовый воин: сознание будущего

Кехо Джон
Религия и эзотерика:
эзотерика
6.89
рейтинг книги
Квантовый воин: сознание будущего

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь