Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Если иметь дело с излучением не атомов, а молекул, то картина энергетических уровней сильно усложняется. В этом случае излучается свет не с определенными дискретными частотами, а в определенных диапазонах (полосах), где излучение непрерывное. Такой спектр излучения называется полосчатым. С частотой связано и количество энергии, содержащееся в данном излучении. Чем больше частота, тем больше энергия кванта света. Частота, умноженная на постоянную величину (постоянную Планка), дает величину энергии данного кванта излучения.

Всякое излучение характеризуется или частотой или длиной волны. Видимый и невидимый свет, рентгеновские лучи и радиоволны имеют одну и ту же физическую природу. Все это — электромагнитные волны, которые отличаются друг от друга только

частотой или длиной волны. Все эти излучения представляют непрерывный спектр электромагнитных колебаний (рис. 54). Если рассматривать весь спектр электромагнитного излучения, то длины волн будут изменяться от сотен километров до миллионных долей миллиметра. Отметим, что человеческий глаз способен воспринимать только незначительную часть всего спектра электромагнитного излучения, которое пронизывает все окружающее нас пространство. Это диапазон с длинами волн от 7600 A (темно-красный цвет) до 3800 A (фиолетовый цвет).

Как известно, по частоте (или длине волны) излучения, которое порождает данный атом, можно определить, какому химическому элементу он принадлежит. Это значит, что, находясь на поверхности Земли и регистрируя излучение атмосферных газов на высотах в сотни километров, можно выяснить химический состав этих газов. Такой способ определения химического состава называется спектральным анализом, поскольку в данном способе анализируется спектр излучения данного вещества.

Методом спектрального анализа был определен не только химический состав верхней атмосферы (который до запуска ракет и спутников не мог быть исследован прямыми методами), но и химический состав фотосферы Солнца. Основные результаты исследования полярных сияний получены, как уже отмечалось, путем анализа спектра излучения атмосферных газов.

Рис. 54. Спектр электромагнитных излучений

На верхней границе земной атмосферы взаимодействие энергичного электрона с атомами атмосферного газа мало эффективно. Во-первых, электрон движется очень быстро и не успевает взаимодействовать с атомами. Во-вторых, плотность атмосферы там очень мала и вероятность того, что электрон встретит на своем пути атом, также невелика. По мере углубления энергичного электрона в атмосферу ситуация постоянно меняется: плотность атмосферы быстро увеличивается, а энергия электрона постепенно уменьшается. Электрон при каждом своем столкновении с нейтральным атомом выбивает из него по одному орбитальному электрону. Нейтральный атом превращается в положительно заряженный ион. Выбитый электрон уходит из атома и становится свободным. Если этот электрон выбит не из внешнего уровня, то его место займет более внешний электрон. Мы уже говорили, что этому электрону надо отдать излишек энергии в виде излучения кванта света. На один акт ионизации (отрыв одного электрона из атома) энергичный электрон тратит строго определенную долю энергии и продолжает лететь дальше, пока не встретит очередной атом. Так, один энергичный электрон па своем пути способен ионизовать десятки атомов атмосферного газа. Чаще всего происходит отрыв одного электрона из атома. Если из атома оторваны два орбитальных электрона, то этот атом дважды ионизован. В атмосфере почти все ионы являются однократно ионизованными атомами.

Когда энергичный электрон взаимодействует с атомом, то происходит не только ионизация атома, но и его возбуждение. Как говорилось выше, атом не может долго находиться в возбужденном состоянии. Орбитальный электрон из возбужденного уровня переходит па свой обычный энергетический уровень, излучая при этом квант света. Это излучение и есть полярное сияние. Таким образом, все основные мощные эмиссии (излучения) полярных сияний возникают в основном в результате ударного возбуждения заряженными энергичными частицами (электронами и протонами). Как только заряженная частица сталкивается с атомом атмосферы, он сразу переходит в возбужденное состояние и испускает квант света.

Тогда мы можем с поверхности Земли наблюдать полярные сияния.

Насколько эффективно энергичные заряженные частицы воздействуют на атомы и молекулы атмосферы зависит от их скорости. Если скорости электронов, протонов и ионов равны, то и эффективность их воздействия одинаковая. Но ионы и протоны в тысячи раз тяжелее электрона. Поэтому при равных скоростях энергии протона и иона в тысячи раз больше энергии электрона.

Хорошо установлено, что быстрые электроны образуют в воздухе около трех пар ионов на каждые 100 эВ первоначальной энергии. Таким образом, электрон с энергией 1 кэВ при полном израсходовании этой энергии образует около 30 пар ионов.

Ионизация атомов и молекул начинается тогда, когда энергия электрона превышает энергию ионизации атома или молекулы. Ионы действуют так же, если их скорости равны скорости электронов. Ионизация происходит наиболее эффективно, если скорость электрона в несколько раз больше, чем та минимальная скорость, при которой начинается ионизация. Это значит, что вначале, на верхней границе атмосферы, где энергия электронного пучка еще большая (и скорость тоже), электрон производит ионизацию атомов неэффективно. И только когда его энергия уменьшается (фактически почти в конце своего пути) электрон наиболее эффективно взаимодействует с атомами, вызывая их ионизацию (рис. 55). Собственно, именно электроны этих энергий интересны для рассматриваемой здесь проблемы полярных сияний; они проникают на те высоты атмосферы, где наблюдаются сияния.

Процесс ионизации происходит так, что первичный электрон выбивает из атома орбитальный электрон (назовем его вторичным), который получает от первичного электрона достаточную энергию, чтобы самому быть способным ионизовать другие атомы. Процесс носит характер каскадного ливня. При подсчете общей ионизации (числа пар ионов) получается, что большая часть ионов (70%) создается именно вторичными электронами. Каждый вторичный электрон уносит энергию около 90 эВ. Эта энергия может быть израсходована на ионизацию и возбуждение атомов и молекул. Возбуждение нейтральных частиц вызывается в значительной степени вторичными электронами.

Когда электрон израсходует свою энергию и ее недостаточно, для того чтобы ионизовать атомы, он способен остатки своей энергии передать атому или молекуле путем их возбуждения. Затем эти атомы или молекулы, переходя из возбужденного состояния в основное, излучают эту энергию в виде света различной длины волны (т. е. различного цвета).

Возбужденные состояния молекул бывают трех видов. Во-первых, они могут быть связаны с конфигурацией электронов в молекуле. Это так называемое электронное возбуждение. Во-вторых, — с колебаниями атомов относительно друг друга. Это колебательное возбуждение. В-третьих, — с вращением атомов относительно друг друга. Это вращательное возбуждение. Энергия вращательного возбуждения незначительна по сравнению с энергиями электронного и колебательного возбуждений.

Рис. 55. Глубина проникновения в атмосферу электронов (I) и протонов (II) различных энергий

Свечение атомов и молекул, которое представляет собой полярные сияния, происходит не только в результате действия энергичных электронов, при котором возникает прямое возбуждение первичными или вторичными электронами. Возбуждение спектров полярных сияний имеет место также при тепловых соударениях, т. е. при соударениях атомов и молекул с частицами, имеющими тепловые скорости. Если у этих частиц не хватает энергии, чтобы произвести ионизацию, то они возбуждают атомы и молекулы. При разогреве ионосферной плазмы электроны приобретают большие скорости, чем скорости тепловых электронов. Поэтому возбудить атомы и молекулы могут и электроны разогретой ионосферной плазмы. Наконец, возбуждение может вызываться и механизмами электрического разряда и вследствие разогрева электрическими полями.

Поделиться:
Популярные книги

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Мастер клинков. Начало пути

Распопов Дмитрий Викторович
1. Мастер клинков
Фантастика:
фэнтези
9.16
рейтинг книги
Мастер клинков. Начало пути

Божья коровка 2

Дроздов Анатолий Федорович
2. Божья коровка
Фантастика:
альтернативная история
5.00
рейтинг книги
Божья коровка 2

Судья (Адвокат-2)

Константинов Андрей Дмитриевич
2. Бандитский Петербург
Детективы:
боевики
7.24
рейтинг книги
Судья (Адвокат-2)

По машинам! Танкист из будущего

Корчевский Юрий Григорьевич
1. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.36
рейтинг книги
По машинам! Танкист из будущего

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Лучший из худший 3

Дашко Дмитрий
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
6.00
рейтинг книги
Лучший из худший 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

Девочка из прошлого

Тоцка Тала
3. Айдаровы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка из прошлого