Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:
Ртуть
Вряд ли нужно доказывать, что ртуть — металл своеобразный. Это очевидно хотя бы потому, что ртуть — единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая — вопрос особый. Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента № 80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг. Этот же рассказ — в основном о многообразии
Причастность ртути к славному клану металлов долгое время была под сомнением. Даже Ломоносов колебался, можно ли считать ртуть металлом, несмотря на то, что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до — 39°C становится совсем очевидным, что она — одно из «светлых тел, которые ковать можно».
Жидкий металл
Ртуть оказала науке огромные услуги. Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов — термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?
Во-первых, ртуть — жидкость.
Во-вторых, тяжелая жидкость — в 13,6 раза тяжелее воды.
В-третьих, у ртути довольно большой коэффициент температурного расширения — всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.
Есть и «в-четвертых», «в-пятых», «в-двадцатых», но вряд ли нужно перечислять все.
Еще любопытная деталь: «миллиметр ртутного столба» — не единственная физическая единица, связанная с элементом № 80. Одно из определений ома, единицы электрического сопротивления, — это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм2.
Все это имеет отношение не только к чистой науке. Термометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все то же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.
Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители.
Современная боевая техника тоже использует замечательные свойства жидкого металла.
К примеру, одна из главных деталей взрывателя для зенитного снаряда — это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел — снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь — взрыв.
Нередко с ртутью можно встретиться и там, где меньше всего ожидаешь. Ртутью иногда легируют другие металлы. Небольшие добавки элемента № 80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути — лучший материал для пайки оцинкованных труб.
Амальгамы
Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы — амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают
Амальгаму таллия, затвердевающую только при —60°C, применяют в специальных конструкциях низкотемпературных термометров.
Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути. В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу — цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, топко вкрапленного в руду.
Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.
Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.
При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента № 80. Сегодня хлорная промышленность — один из самых массовых потребителей металлической ртути.
Ртутный пар
Ртуть закипает при 357°C, т. е. тогда, когда большинство металлов еще далеки от точки плавления. Об этом знали еще в древности, и на этом свойстве издавна основывались методы извлечения металлической ртути из руд. Самым первым способом был обжиг киновари с конденсацией паров ртути на холодных предметах и, в частности, на свежесрубленных зеленых деревьях. Позднее стали использовать реторты из керамики и чугуна. Начиная с 1842 г. ртуть из руд извлекается в отражательных печах, а с 1857 г. — в каскадных. В XX в. к ним присоединились механические многоподовые, а также вращающиеся трубчатые печи.
В киновари 80,2% ртути, но в рудах, считающихся богатыми, на ее долю в среднем приходится 8%. В бедных рудах ртути не больше 0,12%. Такие руды приходится обязательно обогащать тем или иным путем, «отсеивая» бесполезные компоненты.
И сейчас из руд и концентратов ртуть извлекают главным образом пирометаллургическими методами. Обжиг происходит в шахтных, отражательных или трубчатых печах при 700–750°C. Такая высокая температура нужна для того, чтобы киноварь окислялась, а не возгонялась, и чтобы процесс окисления HgS+O2– > Hg + SO2 шел до конца. В результате обжига получается парообразная ртуть, которую превращают в жидкий металл в специальных аппаратах — конденсаторах.
Хотя газы, образующиеся при обжиге, проходят несколько стадий очистки, конденсируется не столько металлическая ртуть, сколько так называемая ступпа — тонкодисперсная смесь, состоящая из мельчайших капелек ртути и мелкой пыли сложного химического состава. В ступпе есть соединения как самой ртути, так и других элементов. Ее подвергают отбивке, стремясь разрушить пылевые пленки, мешающие слиянию микроскопически малых капелек жидкого металла. Ту же цель преследует и повторная дистилляция. Но извлечь из ступпы всю ртуть так и не удается, и это одна из нерешенных и сегодня проблем металлургии ртути. А ведь это один из самых старых разделов металлургии.