Чтение онлайн

на главную - закладки

Жанры

Пособие по журналистике данных
Шрифт:

Пример: проект Бюро журналистских расследований с использованием Системы финансовой прозрачности Комиссии Евросоюза. Статья была написана как результат применения специфических запросов к массиву данных.

Мы искали ключевые слова «коктейль», «гольф» и «выездное заседание». Таким образом, удалось определить, сколько Комиссия потратила на эти пункты бюджета. В результате возникло множество вопросов и сюжетных линий, по которым пришлось провести расследование.

Но ключевые слова не всегда могут дать вам нужную информацию. Иногда приходится сесть и поразмыслить, а что вы действительно ищите. Во время этого проекта мы также

решили узнать, сколько члены комиссии тратят на частные перелеты, но так как данные не содержали фразу «частный самолет», пришлось выяснять названия авиакомпаний другим способом. Когда мы узнали, услугами какого частного перевозчика пользуется Комиссия (Abelag), мы задали вопрос и выяснили, сколько денег тратится на услуги Abelag.

Таким образом, мы четко определили задачу наших запросов: нам нужна цифра, которая сделает громкий заголовок и которую можно интерпретировать так или иначе.

Еще один возможный подход – начать с черного списка и искать исключения. Проще всего написать статью о той информации, которой быть не должно! Хороший пример: совместный проект Financial Times и Бюро журналистских расследований по изучению Структурных фондов ЕС.

Мы сделали запрос на основе правил самой Комиссии о том, каким видам компаний и ассоциаций должен быть закрыт доступ к структурным фондам. Пример: затраты на табак и производители табака.

Мы запросили у базы данных названия табачных компаний и производителей табака. Выяснилось, что компания British American Tobacco получает полтора миллиона евро за фабрику в Германии.

Так как правил затрат Комиссии исключают финансирование, мы очень быстро нашли повод для статьи.

Никогда не знаешь, какую информацию можно будет получить из массива данных, поэтому будьте внимательны. Нужно быть очень предприимчивым, так как лучше всего этот метод подходит для определения очевидных характеристик, которые выявятся в процессе сортировки (самые большие или предельные значения, наиболее часто встречающиеся и т.п.).

Селейн Барр, Citywire

Данные в статье

Иногда складывается впечатление, что журналистика данных заключается исключительно в представлении данных – визуализации, которая быстро и наглядно передает содержание цифр, или интерактивных базах данных с функцией поиска, которые позволяют, скажем, найти улицу или больницу в районе. Все это, конечно, может быть полезно, но, как и другие виды журналистики, журналистика данных предполагает написание статьи. Так какие статьи можно написать о данных? На основе моего опыта работы в BBC, я составил «типологию» статей, представляющих данные.

Думаю, стоит иметь в виду этот список – не только в процессе анализа данных, но и на стадии их сбора (ищете ли вы данные в свободном доступе или компилируете широкий набор информационных запросов).

1. Измерение

Простейшая история ; подсчет или подведение итога: «В прошлом году муниципалитеты потратили на скрепки Х миллиардов фунтов».

Зачастую сложно понять, много это или мало. Нужен контекст, который можно дать при помощи:

2. Соотношения

«В прошлом году муниципалитеты закупили скрепок на две трети своего бюджета на канцтовары»

3. Внутреннего сравнения

«Муниципалитеты тратят больше денег на скрепки, чем на передвижную кухню для престарелых»

4. Внешнего сравнения

«Муниципальные

затраты на скрепки в прошлом году в два раза превысили государственный бюджет помощи иностранным государствам»

5. Изменение во времени

«Муниципальные затраты на скрепки за последние четыре года выросли втрое»

6. Ранжирования

Ранжировать можно по географическому местоположению или по учреждениям, но убедитесь, что основание для сравнения справедливо (например, учитывает численность местного населения).

«Муниципалитет Борсетшира тратит на скрепки для сотрудников больше, чем другие органы власти, и в четыре раза выше, чем тратится в среднем по стране».

Вы также можете разделить субъекты данных по группам:

7. Анализа по категориям

«Муниципалитеты Красной партии тратят на скрепки в 1,5 раза больше, чем муниципалитеты Желтой партии».

Вы можете соотнести факторы с помощью цифр

8. Ассоциаций

«Муниципалитеты, возглавляемые политиками, получившими взносы от производителей канцтоваров, тратят на скрепки больше, и на каждый фунт взноса приходится в среднем сто фунтов затрат»

Разумеется, не забывайте, что корреляция и причинная зависимость – не одно и то же.

Поэтому, изучая затраты на скрепки, получаете ли вы следующие цифры?

Общие затраты для контекста

Сортировку по географическим/историческим/иным факторам, чтобы получить сравнительные данные

Дополнительные данные, чтобы обеспечить справедливость сравнения (например, численность населения)

Другие данные, которые могут стать основой любопытного анализа, и с которыми можно сравнить или соотнести затраты

Мартин Розенбаум, ВВС

Журналисты, работающие с данными, обсуждают выбранные инструменты

Шршршр. Вот с таким звуком ваши данные сыплются из герметичной упаковки. Что теперь? Что вы ищите? Какие инструменты вы используете, чтобы начать работу? Мы попросили журналистов, работающих с данными, рассказать о том, как они работают. Вот что они ответили.

В блоге «Guardian Datablog» мы любим общаться с читателями. Мы позволяем им копировать наши исследования, а значит, они могут написать что–то на основе нашей работы и иногда подметить то, что от нас ускользнуло. Мы стараемся выбирать инструменты, которые может легко освоить любой без изучения языков программирования, без специального обучения или бьющей по карману лицензионной платы.

Именно по этой причине мы сейчас используем продукты Google. Все массивы данных, которые мы чистим и публикуем, доступны в формате Google Spreadsheet, а значит, пользователи, имеющие аккаунт в Google, смогут скачать данные, импортировать в свой аккаунт и составить собственные графики, отсортировать данные и создать сводные таблицы, либо импортировать данные в ту программу, которую они предпочитают использовать.

Для преобразования данных мы используем таблицы Google Fusion. Когда мы создаем теплокарты в Fusion, то расшариваем свои шейп–файлы KML, чтобы читатели смогли скачать их и создать свои теплокарты, может быть, добавив дополнительные слои данных на первоначальную карту Datablog. Еще одно преимущество инструментов Google – они работают на множестве платформ, с которых наши читатели заходят на наш блог (настольный компьютер, мобильные устройства, планшетники).

Поделиться:
Популярные книги

Бомбардировщики. Полная трилогия

Максимушкин Андрей Владимирович
Фантастика:
альтернативная история
6.89
рейтинг книги
Бомбардировщики. Полная трилогия

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая

Мы все умрём. Но это не точно

Aris me
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
Мы все умрём. Но это не точно

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Отражения (Трилогия)

Иванова Вероника Евгеньевна
32. В одном томе
Фантастика:
фэнтези
8.90
рейтинг книги
Отражения (Трилогия)

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Купчиха. Трилогия

Стриковская Анна Артуровна
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Купчиха. Трилогия

Гоблины: Жребий брошен. Сизифов труд. Пиррова победа (сборник)

Константинов Андрей Дмитриевич
Детективы:
полицейские детективы
5.00
рейтинг книги
Гоблины: Жребий брошен. Сизифов труд. Пиррова победа (сборник)

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Буревестник. Трилогия

Сейтимбетов Самат Айдосович
Фантастика:
боевая фантастика
5.00
рейтинг книги
Буревестник. Трилогия

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание