Правовое регулирование применения технологии блокчейн
Шрифт:
В рамках TCP/IP для идентификации сетевых интерфейсов используются три типа адресов – локальные (аппаратные) адреса, сетевые адреса (IP-адреса) и символьные (доменные) имена. В большинстве сетевых технологий LAN (таких как Ethernet, FDDI) для однозначной [12] адресации интерфейсов используются MAC-адреса. Локальный в данном случае означает – действующий не во всей составной сети, а лишь в пределах подсети. Для объединения сетей в глобальную сеть технология TCP/IP использует глобальную систему адресации, которая не зависит от способов адресации элементов отдельных сетей. Для ее реализации формируется пара из номера сети и номера узла, которая в совокупности составляет сетевой адрес – IP-адрес, который идентифицирует не отдельный узел сети (компьютер или маршрутизатор), а одно сетевое соединение (сетевой интерфейс). При этом каждый раз, когда пакет данных отправляется адресату через составную сеть (Интернет), в его заголовке указывается IP-адрес узла назначения. Перед тем как отправить пакет в следующую сеть, маршрутизатор должен определить на основании найденного IP-адреса следующего маршрутизатора его локальный адрес. Поскольку между IP-адресом и локальным адресом узла не существует функциональной взаимосвязи, для их соотношения используется протокол разрешения адресов ARP (см.
12
Однозначность адресации имеет особое значение для реализации блокчейн-технологии и её правового регулирования.
Рис. 3. Процедура преобразования адресов
При этом для упрощения адресации в сети используются символьные имена соответствующих узлов. Составляющие полного символьного (или доменного) имени разделяются точкой и перечисляются в следующем порядке: простое имя хоста, имя группы хостов, имя более крупной группы (домена) и так до имени домена самого высокого уровня (например, ru, us).
Основы построения сетей в целом и сети Интернет в частности оказали существенное влияние на возникновение и развитие применения технологии блокчейн. Блокчейн-системы в своей работе используют TCP/IP протоколы и могут рассматриваться в качестве приложения прикладного уровня.
Блокчейн представляет собой базу данных, распределенную между всеми включенными в сеть блокчейн (Blockchain Network) устройствами, с использованием которой пользователи осуществляют передачу информации. Блокчейн-технология не является каким-либо единым явлением, именем собственным, – в настоящее время это собирательное название для всевозможных способов реализации идеи, лежащей в блокчейн-технологии. Для того чтобы полноправно относиться к блокчейн-технологии в том смысле, в котором она изначально была отражена в работе Сатоши Накамото, блокчейн-структура должна удовлетворять следующим критериям.
• Иметь децентрализованную технологическую основу, то есть информация должна быть распределенной между всеми узлами сети и должна поддерживаться в актуальном состоянии через процессы репликации и синхронизации.
• Поддерживать неразрывную связь между блоками данных путем формирования в каждом новом блоке ссылки на предыдущий по отношению к нему блок.
• Эффективно кодировать массивы данных в уникальные информационные блоки стандартного размера, т. е. хешировать данные.
• Применять в своей работе стойкие к взлому криптографические алгоритмы для защиты содержащейся в блоках информации.
• Использовать элементы специального подраздела математики – теории игр – для обеспечения соблюдения правил сети и достижения консенсуса при создании новых блоков [13] .
Как известно, любая информация, в том числе информация о транзакциях, может быть представлена объемом данных, который в ней содержится. Так и информация о транзакциях в системе блокчейн представляет объем данных, объединенных в своего рода звенья, которые в свою очередь объединены в хронологическом порядке в цепочку блоков, в которой каждый предыдущий блок подтверждает действительность последующего путем включения информации о предыдущих транзакциях в виде особого криптографического ключа в заголовок каждого последующего блока транзакций (см. рис. 4) [14] . При этом каждый из участников сети (так называемые ноды [15] ) хранит как минимум часть всей базы данных, что обеспечивает ее устойчивость к противоправным действиям со стороны как третьих лиц, так и самих участников. Под транзакцией в случае с блокчейн-технологией подразумевается любое взаимодействие между участниками блокчейн-системы – будь то передача какого-либо актива (например, криптовалюты) или передача информации – каждое из этих взаимодействий фиксируется в блоке системы.
13
Подробнее об этом см.: Цихилов А. Блокчейн. Принципы и основы. М.: Интеллектуальная Литература, 2019. С. 14–15.
14
Отсюда и название технологии – Блокчейн – цепь блоков.
15
Node.
Каждый блок, содержащий информацию о транзакциях в сети блокчейн, идентифицируется с помощью криптографического ключа – хэша (hash) – который генерируется с использованием криптографических алгоритмов, таких как SHA256 (используется в сети Биткоин) [16] , SHA-3 (Ethereum) и другие. Инструмент хэширования информации является неотъемлемой частью технологии блокчейн – оно используется для адресации в блокчейн-сетях, для формирования электронной «подписи» транзакций, а также для создания новых блоков – т. е. «майнинга». Хэширование – это алгоритмический метод преобразования набора данных произвольного размера в стандартизированную строку фиксированной длины. Алгоритм преобразования, используемый в блокчейн-сетях, не допускает повторения одного и того же хэша в различных блоках, который свойственен более простым хэш-таблицам. Использование хэширования позволяет удостовериться в целостности информации, содержащейся в каждом последующем блоке в сети блокчейн, путем так называемой проверки «контрольной суммы», расчет которой основан на алгоритме хеширования. Для реализации этого подхода блокчейн-системы могут использовать, например, распределенные хэш-таблицы [17] или хэш-таблицы с прямым связыванием.
16
Andreas M. Antonopoulos. Mastering Bitcoin. O’Reily Media, 2015. P 170.
17
Matteo Bernardinetal. Blockchains meet distributed hash tables: Decoupling validation from state storage // Distributed Ledger Technology Workshop. 2019. P. 43–55.
Использование
18
Чаннов С.Е. Использование блокчейн-технологий для ведения реестров в сфере государственного управления // Административное право и процесс. 2019. № 12. С. 29–34.
19
Помазанов В.В., Грицаев С.И. Криптовалюта: криминалистическое прогнозирование // Российский следователь. 2018. № 11. С. 19–23.
Следует отметит, что майнинг, т. е. процесс добавления информации в сеть блокчейн, является основой функционирования этой технологии. На практике существуют различные способы организации майнинговой деятельности: соло-майнинг, при котором майнер добывает криптовалюту самостоятельно; майнинг через пулы – через серверы, которые могут объединять мощности персональных компьютеров многих майнеров; облачный майнинг, при котором майнер платит деньги какой-либо компании за оборудование, после чего данная компания берет на себя ответственность за установку оборудования и его настройку для работы [20] .
20
Ершова И.В., Трофимова Е.В. Майнинг и предпринимательская деятельность: в поисках соотношения // Актуальные проблемы российского права. 2019. № 6. С. 73–82.
Важным механизмом, обеспечивающим безопасность и надежность хранения информации в сети блокчейн, является асимметричное шифрование, которое используется в этой системе. Под шифрованием понимается процесс превращения открытого текста в зашифрованный с помощью шифра – пары алгоритмов для шифрования и дешифрования соответствующей информации [21] . Ассиметричное шифрование, или шифрование с открытым ключом, позволяет устанавливать «доверительные» отношения между пользователями блокчейн-сети путем предоставления механизма для подтверждения целостности и достоверности транзакций, притом что сами транзакции фиксируются в публичной книге транзакций. В отличие от симметричного шифрования, в котором для кодирования и декодирования используется один и тот же ключ, в ассиметричном шифровании отправитель использует открытый ключ (public key) для шифрования сообщения, которое можно расшифровать только с помощью закрытого ключа (private key). Применительно к блокчейн-системам частные ключи используются для того, чтобы совершить (sign) транзакцию, которая будет отправлена на адрес, закрепленный за публичным ключом (см. рис. 5).
21
Стивенс Р. Алгоритмы. Теория и практические применение. М.: Издательство «Э», 2016. С. 366.
Рис. 5. Совершение транзакции в сети блокчейн
Ключевой и самой часто упоминаемой особенностью блокчейн-технологии является отсутствие какого-либо центра контроля и управления за транзакциями, осуществляющимися в сети блокчейн, поскольку транзакции подтверждаются с помощью особого криптографического механизма. Основной способ подтверждения транзакций состоит в обеспечении их публичности – каждая проведенная операция в системе передается всем устройствам сети, и только после подтверждения с их стороны запись о ней заносится в публичную книгу транзакций (shared public ledger). В этой связи разработчики этой технологии, теоретически, не могут воздействовать на целостность и достоверность транзакций. Механизм, с помощью которого подтверждаются транзакции и происходит их добавление в блоки информации и в систему блокчейн – механизм консенсуса. В настоящее время в блокчейн-системах используются несколько механизмов консенсуса: доказательство работы [22] , доказательство владения [23] , циклический механизм [24] достижения консенсуса и другие. Каждый из этих механизмов по-своему обеспечивает надежность и достоверность информации, содержащейся в системе блокчейн. К примеру, механизм доказательства работы, который используется в системе Биткоин, в основе своей имеет выполнение участниками сети блокчейн вычислительной задачи по нахождению соответствующего требованиям системы хэша.
22
Proof of work.
23
Proof of stake.
24
Round-robin.
Вампиры девичьих грез. Тетралогия. Город над бездной
Вампиры девичьих грез
Фантастика:
фэнтези
рейтинг книги
Хранители миров
Фантастика:
юмористическая фантастика
рейтинг книги
