Предчувствия и свершения. Книга 2. Призраки
Шрифт:
Сравнение свойств протона и нейтрона, сильно отличающихся зарядом (заряд протона +1, заряд нейтрона 0) и мало отличающихся по массе (нейтрон лишь на 0,13 % тяжелее протона), заставило ученых задуматься: не существует ли еще одна, дотоле неведомая симметрия, объединяющая микрочастицы в своеобразные группы?
Успех теории ядерных сил дал новый толчок развитию науки. Предстояло объяснить несколько фактов, обнаруженных экспериментаторами, но оставшихся непонятными. Было, например, установлено, что частицы, возникающие за очень короткое время в результате сильных ядерных взаимодействий, затем могут через очень длительное время самопроизвольно распасться без всяких видимых причин. Для объяснения этого и некоторых других фактов пришлось предположить существование еще одного
Стабильность большинства ядер, состоящих из протонов и нейтронов, приводит к заключению о том, что сами протоны и нейтроны столь же устойчивы. Однако наблюдения над свободными нейтронами показали, что это не так. В среднем через пятнадцать минут свободный нейтрон распадается, порождая протон, электрон и нейтрино. В некоторых неустойчивых ядрах аналогичные распады наблюдаются и внутри ядра. Этот процесс, называемый бета-распадом, состоит в том, что из ядра вылетает электрон, а положительный заряд ядра увеличивается на единицу. При этом баланс энергии и импульса, измеренный со всей тщательностью, не сходится. Энергия и импульс первоначального ядра оказываются больше, чем сумма энергии и импульса дочернего ядра и электрона. Убеждение в необходимости соблюдения законов сохранения энергии и импульса привело в этом случае к предсказанию существования нейтрино, неизвестных ранее незаряженных частиц, уносящих недостающую энергию и импульс. Впоследствии нейтрино были обнаружены.
Устойчивость ядер и устойчивость нейтронов внутри большинства ядер обеспечивается сильными ядерными взаимодействиями. Распад нейтрона вызывается слабыми взаимодействиями. Они проявляются в полной мере лишь внутри ядерных частиц, вне — чрезвычайно слабы. Даже внутри нейтрона они в 1000 раз слабее электромагнитных взаимодействий. Однако недавно удалось обнаружить, что эти силы действуют и в масштабах атома. Все это, вместе взятое, позволило ученым рассматривать протоны и нейтроны как два варианта одной и той же ядерной частицы— нуклона.
Это могло бы показаться чистой мистикой, не будь столь парадоксальное утверждение основано на реальном фундаменте многочисленных экспериментов. Нуклон, эта двуединая частица, выступает под единой личиной только внутри ядер атомов более тяжелых, чем водород. Внутри ядер электрический заряд не принадлежит отдельным протонам. Он полностью коллективизирован. Можно представить себе, что ядро является каплей нуклонной жидкости, удерживаемой вместе действием ядерных сил, проявляющихся в том, что отдельные нуклоны постоянно обмениваются между собой пи-мезонами. При этом электрические заряды покидают отдельные протоны и оттесняются к поверхности капли.
При ядерных реакциях некоторые частицы покидают ядро. Самые легкие из свободных частиц, имеющих положительный заряд — позитроны — являются античастицами электронов и в земных условиях очень быстро гибнут, встречаясь и аннигилируя с электронами. Самые простые из ядерных частиц, имеющие единичный положительный заряд, оказываются протонами. Их ядерные близнецы, не имеющие заряда, называются нейтронами. Разница между ними может быть обнаружена только при помощи электромагнитных взаимодействий. Нейтроны не реагируют ни на электрическое, ни на магнитное поля, ни на электромагнитные волны. Протоны притягиваются или отталкиваются электрическими зарядами, в соответствии с их знаком, их путь искривляется в магнитном поле, на них можно воздействовать электромагнитными волнами. Правда, эти различия можно обнаружить, лишь когда протон и нейтрон свободны, то есть находятся вне ядер, вне действия ядерных сил, в сто раз превосходящих по величине электромагнитные силы.
Так была установлена еще одна симметрия природы, названная изотопической симметрией. Она объединяет между собой протон и нейтрон, позволяя рассматривать их как единую частицу — нуклон. Нуклон обладает изотопической симметрией, электромагнитное поле нарушает изотопическую симметрию. Электромагнитное поле обнаруживает, является
Развивая идею Юкавы о поле ядерных сил и о частицах, реализующих действие этого поля, можно сказать, что слабые взаимодействия тоже связаны с существованием особого поля. Можно и оценить массу частиц, реализующих это поле. Что нужно учесть при этой оценке? Слабые взаимодействия в 1000 раз слабее электромагнитных. Они и убывают быстрее по мере увеличения расстояния. Нужно принять во внимание также, что масса частиц, представляющих поля, пропорциональна квадратному корню из отношения сил этих полей. Так ученые получили, что масса частиц поля слабого взаимодействия примерно в 30 раз больше массы протона или нейтрона. При этом спин такой частицы должен быть целым числом, то есть она должна подчиняться той же статистике Бозе — Эйнштейна, которой подчиняются фотоны — частицы, реализующие электромагнитные взаимодействия.
Предсказанные свойства новых частиц обнаружили их глубокое родство с фотонами. Естественно, возник вопрос: не принадлежит ли новая частица к тому же семейству, что и фотон? Нет ли общности между электромагнитными и слабыми взаимодействиями? Прежде чем приняться за объяснение сходства, необходимо понять причину и значение различия между новой частицей и фотоном. Главные различия в их массе. Вся масса фотона обусловлена переносимой им энергией. Он летит со скоростью света и не может изменить своей скорости, его масса покоя равна нулю. Масса покоя новой частицы равна 30 массам нуклона, она очень велика. Могут ли столь различные частицы быть родственниками?
Все ранее известные теории элементарных частиц дали бы решительный отрицательный ответ. Но теория симметрии, на основе фактов, известных в других областях физики, позволила подойти к этому вопросу глубже. Она столкнула ученых с невиданным ранее эффектом, с одним из самых мистических сюрпризов микромира. Оказалось, что один из видов нарушения симметрии — спонтанное нарушение — может придать массу частице, не имеющей массы…
Однако что такое спонтанное нарушение симметрии? Самый наглядный пример спонтанного нарушения симметрии можно увидеть за круглым банкетным столом, все места за которым заняты. Между присутствующими лежат салфетки. Картина расположения салфеток на столе совершенно симметрична. Рядом с любым человеком, справа и слева от него, лежит по салфетке. Но симметрия спонтанно нарушается, как только один из присутствующих возьмет салфетку. Он может взять любую, справа или слева. Однако теперь все должны брать салфетки с той же стороны. Если кто-нибудь поступит иначе — он оставит одного из присутствующих без салфетки, хотя не рядом с ним останется лишняя. Теперь зачастую кладут салфетки на тарелку, стоящую перед каждым посетителем, так что симметрия не может быть нарушена.
Нечто похожее (не внешне, а по существу) наблюдается в куске железа. Каждый атом железа ведет себя как маленькая магнитная стрелка. Тепловые колебания заставляют атомы принимать все возможные ориентации в пространстве, поэтому их магнитные поля ориентированы симметрично во всех направлениях и компенсируют друг друга. Такой кусок железа не обладает свойствами магнита. Но если температура падает, множество соседних атомов могут вдруг ориентировать свои магнитные поля в одинаковом направлении. Возникает спонтанное намагничивание отдельных частей куска железа. Иногда это спонтанное намагничивание может распространиться по всему куску. Тогда весь кусок железа станет магнитом.