Чтение онлайн

на главную - закладки

Жанры

Приглашение в теорию чисел

ОРЕ О.

Шрифт:

Рис 1.

Существует много других целочисленных решений уравнения Пифагора (1.3.1), например,

х = 5, у = 12, z = 13,

х = 7, у = 24, z = 25,

x = 8, у = 15, z = 17.

Далее

мы покажем, как можно получить все такие решения. Способ находить их был известен древним грекам, а возможно, и вавилонянам.

Если даны два целых числа, x и y, то всегда можно найти соответствующее число z, удовлетворяющее уравнению (1.3.1), но вполне возможно, что z будет иррациональным числом. Если же потребовать, чтобы все три числа были целыми, то тогда возможности существенно ограничиваются. Греческий математик Диофант (время его жизни точно не известно, приблизительно 200 г. нашей эры) написал книгу Arithmetica («Арифметика»), в которой рассматриваются подобные задачи. С этого времени задача нахождения целочисленных или рациональных решений уравнений называется задачей Диофанта, а диофантов анализ — важная часть современной теории чисел.

Система задач 1.3.

1. Попытайтесь найти другое решение уравнения Пифагора в целых числах.

2. Попытайтесь найти решения уравнения Пифагора, в которых гипотенуза на единицу больше, чем больший из двух катетов.

§ 4. Фигурные числа

В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как

32 = 9, 72 = 49, 102 = 100,

и аналогично с кубами, т. е. такими числами, как

23 = 8, 33 = 27, 53 = 125.

Рис. 2.

Этот геометрический образ рассматриваемой операции с числами является частью богатого наследства, оставленного древнегреческими мыслителями. Греки предпочитали думать о числах, как о геометрических величинах: произведение с = аb рассматривалось как площадь с прямоугольника со сторонами a и b. Также можно было рассматривать a•b как число точек в прямоугольной таблице с а точками на одной стороне и b точками на другой. Например, 20 = 4•5 есть число точек в прямоугольной таблице на рис. 2.

Любое целое число, которое является произведением двух целых чисел, можно было бы назвать прямоугольным числом. Когда две стороны прямоугольника имеют одну и ту же длину, то такое число является квадратным числом, или квадратом. Некоторые числа нельзя представлять в виде прямоугольных чисел иначе, как тривиальным способом — в виде цепочки точек, лежащих в одном ряду. Например, пять может быть представлено как прямоугольное число лишь единственным способом, взяв одну сторону равной единице, а другую — пяти (рис. 3).

• • • • •

Рис. 3.

Такие

числа греки называли простыми числами. Точка, взятая в одном экземпляре, не рассматривалась как число. Число 1 явилось тем кирпичом, из которого строились все остальные числа. Таким образом, 1 не была для них и не считается сейчас простым числом.

Можно было бы рассматривать точки, равномерно заполняющие не только прямоугольники и квадраты, но и другие геометрические фигуры. Последовательные треугольные числа изображены на рис. 4.

Рис. 4.

В общем случае n– е треугольное число задается формулой

Тn = ½ n (n+1), n = 1, 2, 3… (1.4.1)

У этих чисел масса интересных свойств: например, сумма двух последовательных треугольных чисел является квадратом

1 + 3 = 4, 3 + 6 = 9, 6 + 10 = 16 и т. д. (1.4.2)

Обобщением треугольных чисел и квадратов явились многоугольные числа. Метод их получения проиллюстрируем на примере пятиугольных чисел. Для этого рассмотрим рис. 5.

Рис. 5.

Глядя на него, легко найти несколько первых пятиугольных чисел,

1, 5, 12, 22, 35. (1.4.3)

Можно показать, что n– е пятиугольное число выражается формулой

pn = ½ (3n2n). (1.4.4)

Шестиугольные числа, и вообще k– угольные числа, аналогично определяются с помощью правильного k– угольника, и мы не будем больше тратить времени на их обсуждение. Фигурные числа, особенно треугольные, пользовались большой популярностью при изучении чисел в конце эпохи Возрождения, после того как греческая теория чисел проникла в Западную Европу. И сейчас их можно иногда встретить в статьях по теории чисел.

Проводя анализ такого геометрического представления чисел, можно получить несколько простых соотношений. Остановимся лишь на одном примере. Уже давно было известно, что складывая последовательно нечетные числа, мы все время будем получать квадраты, например,

1 + 3 = 4, 1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = 16 и т. д.

Чтобы доказать это соотношение, достаточно лишь взглянуть на рис. 6, на котором изображены последовательно вложенные квадраты.

Рис. 6.

Система задач 1.4.

1. Докажите по индукции общую формулу (1.4.1) для треугольных чисел.

2. Докажите формулу (1.4.4) для пятиугольных чисел.

Поделиться:
Популярные книги

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Наследник пепла. Книга II

Дубов Дмитрий
2. Пламя и месть
Фантастика:
фэнтези
5.00
рейтинг книги
Наследник пепла. Книга II

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Девочка из прошлого

Тоцка Тала
3. Айдаровы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка из прошлого

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Наследие Маозари 6

Панежин Евгений
6. Наследие Маозари
Фантастика:
попаданцы
постапокалипсис
рпг
фэнтези
эпическая фантастика
5.00
рейтинг книги
Наследие Маозари 6

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3