Приключения радиолуча
Шрифт:
Пожалуй, одна из самых больших трудностей состоит в том, как отпечатать запутанные тончайшие схемы из миллионов элементов на полупроводниковую пластинку. Причем процесс печати повторяется не единожды, и каждый раз надо точно совмещать новую «картинку» с предыдущей. Самое крошечное несовпадение, и — брак. Схема работать не будет.
При толщине линии 1—2 микрометра схема отпечатывается на кристалле с помощью ультрафиолетовых лучей. При более тонких, субмикронных линиях копирование исходного оригинала под силу лишь рентгеновским лучам и сфокусированным пучкам электронов.
Чтобы создать чип, надо его спроектировать, изготовить и испытать. Эти задачи уже
Грубую оценку можно дать, разделив наибольший практический размер кристалла на наименьший практический размер транзистора.
Чтобы транзистор устойчиво работал, число подвижных электрических зарядов в его кристалле должно быть не менее определенной величины. При меньшем числе зарядов он просто не сможет нормально выполнять свои функции по обработке информации на тех физических принципах, которые приняты в современной вычислительной технике.
Подвижными зарядами в транзисторе являются атомы примеси. Обычно один атом примеси дает один подвижный заряд. Чтобы число этих зарядов, например в кремниевом транзисторе, было достаточным, его линейный размер должен быть не менее 400 постоянных кристаллической решетки. (Постоянная кристаллической решетки — это линейный размер элементарной ячейки кристалла.) На практике приходится учитывать целый ряд других факторов, поэтому размер транзистора увеличивается еще в три раза. У кремния постоянная решетка равна 5,4•10 —8сантиметра. Если умножим ее значение на 400, а затем еще на три, получим, что минимальный линейный размер транзистора равен примерно одному микрометру, а его площадь соответственно одному квадратному микрометру, или 10 —8квадратных сантиметра.
Предельный размер кристалла самого чипа определяется экономическими соображениями. Кристаллы нарезаются из одной пластины большого размера. В свою очередь, эта пластина, одна из многих десятков тонких пластин, на которые разрезан цилиндр монокристаллического кремния. Современная технология позволяет выращивать кристаллы кремния диаметром до 15 сантиметров, а в ближайшем будущем, возможно, удастся получать кристаллы диаметром до 20 сантиметров.
В большой пластине кремния неизбежно где-то есть микроскопические дефекты, и внутри и на поверхности. Чем на более крупные квадратики разрезается круглая пластина, тем больше вероятность того, что в исходную пластину для чипа попадет микродефект. В настоящее время считается, что нарезать кристаллы площадью более одного квадратного сантиметра неэкономно. Но специалисты надеются, что со временем предельная площадь кристалла увеличится до 10 квадратных сантиметров.
Сколько же транзисторов можно расположить на пластине такого размера? К сожалению, большая ее часть (90 процентов) пойдет на соединения элементов схемы и изоляцию их друг от друга. И только около одного квадратного сантиметра может быть заполнено транзисторами. Если каждый транзистор будет занимать площадь примерно 10 —8квадратного сантиметра, то на одном кристалле уместится 100
При нынешних темпах научно-технического прогресса этот рубеж будет достигнут за десятилетие. Тогда один такой суперчип сможет выполнять всю работу сегодняшних стационарных ЭВМ. По имеющимся оценкам, мировой объем изделий электронной промышленности в настоящее время превышает 200 миллиардов долларов, что приблизительно равно объему валового национального продукта такой страны, как Индия. Не так уж и мало, если учесть, что она по этому показателю возглавляет вторую десятку государств. К концу нынешнего столетия объем продажи составит примерно один триллион долларов. Так что в перспективах электронной промышленности сомневаться не приходится.
Инженеры сейчас всерьез размышляют над тем, что еще недавно проходило по ведомству научной фантастики. Например, как уместить музыкальный синтезатор, способный играть за целый оркестр, в одном кристалле. Полагают, что в недалеком будущем появится «кремниевый секретарь», который сумеет говорить и понимать речь, составлять телеграммы, назначать совещания и в вежливой форме напоминать о делах. А к концу века ожидаются и личные роботы.
Уже сейчас начинается революция в телевидении. Передача сигналов в цифровом коде — метод, который при использовании суперсхем станет дешевым, обеспечит качество изображения, значительно превосходящее нынешнее. Появятся телевизоры, способные хранить понравившиеся передачи в своих запоминающихся устройствах на суперчипах.
Правда, мешает использование чипа в качестве долговременной памяти пока одно «но», которое не всегда удается обойти.
При выключении питания записанная информация пропадает, поэтому на них постоянно надо подавать питание. Но крошки-чипы потребляют не так уж и много, так что в стационарных условиях с этим недостатком можно примириться.
Пожалуй, не найти радиотехнических систем, которых не коснется «чипизация». Радары не столь уж далекого будущего, например, будут состоять лишь из антенны, которая опять же будет исполнена в виде множества интегральных СВЧ-микросхем (антенны такого типа называются фазированными антенными решетками, или сокращенно ФАР) и миниатюрной ЭВМ на суперчипе.
А остановится ли электроника на суперчипах? Какие пути ее развития намечаются уже сейчас, в наше время?
ЭЛЕКТРОНИКА ЧЕТВЕРТОГО ПОКОЛЕНИЯ
Как мы видели, начиная с 1960-х годов, момента старта интегральной электроники, инженеры и технологи словно втянулись в марафонскую гонку: кто быстрее уменьшит в размере транзисторы и плотнее разместит их в одном чипе. Принцип был один: изготовить уже известную схему, только в меньшем масштабе, соответственно уменьшив напряжение питания.
При всей своей прогрессивности и достоинствах сама идея интегральной электроники не несла в себе ничего принципиально нового. Это был все тот же схемотехнический путь, то есть известные схемы, которые работали на дискретных полупроводниках, воспроизводились на кристалле кремния. Конечно, не обошлось и без взаимного влияния.
Само развитие интегральной технологии открывало новые возможности, рождались новые типы транзисторов, что, безусловно, отразилось и на принципах построения схем. Но все равно это путь безудержного роста числа элементов в микросхеме по мере усложнения выполняемых ею функций.
Он тебя не любит(?)
Любовные романы:
современные любовные романы
рейтинг книги
Красная королева
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Возлюби болезнь свою
Научно-образовательная:
психология
рейтинг книги
