Приключения радиолуча
Шрифт:
Насекомые — отличные трассеры для изучения циркуляции в атмосфере с помощью радара. Наблюдая за эхо-сигналами, отраженными от захваченных воздушными потоками мошек, можно увидеть как бы в разрезе дороги ветров на расстояниях, превышающих даже сто километров. А висящие в безветренную погоду в воздухе невидимые глазу рои насекомых могут быть приняты за сигнал от зависшего неопознанного объекта.
Но, как говорят, нет худа без добра. Изменили точку зрения, и то, что считали помехой, стало полезным эффектом. Для радара нашли новое применение — заблаговременно предупреждать о нашествии саранчи. С его помощью можно обнаруживать зоны ее активности на площади до нескольких тысяч квадратных километров. А саранча — противник серьезный, опасный своей неисчислимостью. На экране радара ее
Так вслед за орнитологами радар стал помогать энтомологам: возникла еще одна новая научная дисциплина — радиолокационная энтомология. С помощью радара американские ученые проникли в тайны развития таких назойливых мошек, как москиты, и даже изучили их дальние миграции. Причем исследования они провели на армейской радиолокационной станции, предназначенной для засечки минометных позиций, работавшей на длине волны 1,9 сантиметра. Факт показателен: сколь много мирных профессий мог бы обрести радар, если бы он был «освобожден от воинской повинности».
Есть некоторые вещи, в которые почему-то верится с трудом, несмотря на то, что в наше энтээровское время мы уже теряем способность чему-либо удивляться. Пожалуй, то, что радар может обнаружить мошку, относится именно к таким вещам. Сейчас с помощью радара можно следить за распространением вредных насекомых и паразитов. Лет пятьдесят назад этому не поверили бы. Перенесемся на минуту в то время.
Январь 1934 года. Двадцатишестилетний инженер Центральной радиолаборатории Ю. К. Коровин провел первые опыты на льду Финского залива по радиолокационному обнаружению гидросамолета. В затею верили лишь единицы энтузиастов. А сейчас радары изучают жизнь насекомых, инженеры выводят формулы для расчета радиоотражающей поверхности какого-нибудь комара точно так же, как лет 20—30 назад подобного рода формулы придумывались для самолетов, ракет, кораблей.
Крошечный москит и самолет, вещи, казалось бы, несовместимые. Но для современных радаров оба они — объекты наблюдения.
К сожалению, радиолокационные свойства сигналов, отраженных от птиц и насекомых, интересуют не только орнитологов и энтомологов, но и разработчиков армейских радаров. Для них появились новые цели: разного рода легкие беспилотные летательные аппараты с дистанционным управлением, так называемые «воздушные роботы», предназначенные в основном для разведывательных целей. Например, один из таких роботов — израильский «Скаут» — был применен в Ливане летом 1982 года. Он в дневное время словно из студии передал телевизионное изображение позиций ПВО. По сведениям из зарубежных источников, планируется также использовать мотодельтапланы — посадить на них десантников и разведчиков.
Эти летательные средства не намного превосходят в скорости пернатых, да и отраженный от них сигнал невелик. Не исключено, что иногда оператору придется поломать голову: где сигнал от дельтаплана, а где от птичек и мошкары.
Известием о том, что птицы для изучения путей и миграции снабжаются радиопередатчиками, в наше микроэлектронное время уже не удивишь. Но мысль, чтобы насекомому размером с муху приладить радиопередатчик, все-таки может показаться фантастичной. А между тем один инженер из Калифорнии сделал такой передатчик, рассчитанный на восемь часов непрерывной работы. С его помощью можно достоверно узнать весь распорядок дня насекомого.
СИГНАЛЫ ИЗ ЯСНОГО НЕБА…
Однажды, когда я интересовался проблемой «ангелов», мне встретилось подзабытое со школьной поры четверостишие, как раз, казалось бы, на эту тему:
Небо осмотрели Изнутри и наружно, Никаких богов и ангелов Не обнаружено.Маяковский, конечно, имел в виду божьих ангелов. А вот их радиолокационные «тезки» есть и в чистом небе, хотя визуально в нем ничего не обнаруживается: ни насекомых, ни птиц…
Если бы человек мог видеть в радиодиапазоне, наша
Этот вопрос иногда задают на экзаменах по физике. Целое созвездие корифеев науки (и даже кое-кто еще в начале XX века) решало задачу. Сегодня ответ общеизвестен. Свет рассеивается на неоднородностях атмосферы. Неоднородности — не только взвешенные в атмосфере частицы пыли, а главным образом хаотически малые сгущения и разрежения воздуха (флуктуация плотности), которые приводят к изменению коэффициента преломления.
Причем чем короче длина волны, тем сильнее рассеяние (интенсивность рассеянного света обратно пропорциональна 4-й степени длины волны). Например, длина волны фиолетовых лучей (0,4 микрометра) в два раза меньше длины волны красных (0,8 микрометра).
Поэтому фиолетовые лучи рассеиваются в 16 раз сильнее, чем красные, и при равной интенсивности падающего излучения фиолетовых лучей в рассеянном свете будет в 16 раз больше, чем красных. Все остальные цветные лучи солнечного света (синие, голубые, зеленые, желтые, оранжевые) войдут в состав рассеянного света в количествах, обратно пропорциональных 4-й степени длины волны каждого из них. Если рассеянные лучи взять в таких соотношениях, то цвет получившейся «смеси» будет голубым.
Радиоволны также рассеиваются на неоднородностях атмосферы и часть из них улавливается антенной локатора. Их мощности зачастую бывает достаточно, чтобы вызвать засветку на экране радара. Так возникают «ангелы» при совершенно прозрачной атмосфере. На небе ни облачка, а на индикаторе «ангелы».
Только размеры неоднородностей плотности атмосферы должны быть во много раз больше, чем при рассеянии света, потому что и длина радиоволн гораздо больше. В отличие от микронеоднородностей, на которых рассеивается свет, не видимые глазом макронеоднородности, на которых рассеиваются радиоволны, не существуют постоянно, но они возникают довольно часто и могут иметь причудливую конфигурацию. «Ангелы» па экранах радаров — копии этих затейливых рисунков. И многокилометровые по высоте столбы, и горизонтальные полосы, и синусоидальные кривые, и профили морских волн с опрокидывающимися гребнями, и ряд концентрических окружностей, и любая другая фантазия природы, воплощенная в изменениях плотности атмосферы. Вертикальные столбы — отражения радиоволн от восходящих и нисходящих потоков воздуха. Внутри столба образуются завихрения (турбулентность), а скорость потока воздуха может достигать нескольких сотен километров в час. Невидимые с земли вихри аэрологи называют турбулентностью ясного неба. Они опасны для самолета. 12 февраля 1963 года реактивный самолет «Боинг-720», летевший из Флориды в Чикаго, не справился с вертикальным турбулентным потоком и потерпел катастрофу. Оператор радара на земле наблюдал на экране, как самолет вошел в «ангел» в виде белого пятна, хотя летчик передавал по радио, что он летит в чистом небе.
Воздушные ямы, вызывающие сильную болтанку самолетов, термики (большие «пузыри» воздуха, поднимающиеся над нагретой поверхностью), морские и береговые бризы, завихрения, образующиеся при движении воздуха над неровностями земной поверхности, частицы пыли — все это причины «ангелов». Полагают, что еще одним источником «кольцевых ангелов», помимо птиц, являются так называемые гравитационные и взрывные волны, которые возникают в неустойчивых слоях атмосферы.
С явлением, названным турбулентностью ясного неба, познакомились не так уж давно. До начала эры реактивной авиации господствовало мнение о том, что на высотах 6—10 километров и выше отсутствуют привычные для более низких высот воздушные ямы, болтанка, и авиапассажиров ждет спокойный полет. Однако в начале 50-х годов стало ясно, что и на больших высотах самолеты, случается, тоже испытывают сильную болтанку. И это происходит не только при полетах вблизи мощных облаков, где обычно атмосфера находится в возмущенном состоянии, но и там, где никаких облаков нет, среди ясного неба.