Приключения радиолуча
Шрифт:
Но получить в космосе электроэнергию — можно сказать, еще полдела. Вот как передать ее на Землю? Пока не создан материал, пригодный для провода, который можно было бы протянуть на высоту 36 тысяч километров. Если опускать с орбитальной станции самый прочный стальной трос, то он оборвется уже через 48 километров под действием собственного веса. Ученые считают, что лучше всего для передачи электроэнергии с орбиты использовать радиоволны: как в линиях радиосвязи. Только передавать радиоволны будут не информацию, а энергию. Идея передачи энергии с помощью радиоволн сверхвысоких частот разрабатывается довольно бурно. Во многом большой прогресс, достигнутый в этом вопросе за последние годы, объясняется тем, что почти все компоненты для создания такой системы передачи энергии уже имелись в наличии. Их заранее подготовила радиоэлектроника. В настоящее время существуют линии электропередачи с помощью радиоволн, КПД которых превышает 50 процентов. Ожидается, что при использовании
Как же устроена радиолиния для передачи электроэнергии? Солнечные батареи преобразуют энергию солнечного света в постоянный ток, который подводится к генераторам колебаний сверхвысоких частот, то есть служит для них источником электропитания. Генераторы преобразуют постоянный ток в колебания сверхвысоких частот.
Техника генерирования и усиления колебаний этого диапазона частот хорошо освоена промышленностью и интенсивно развивается и совершенствуется. Например, в США ежегодно производится более миллиона сверхвысокочастотных приборов на общую сумму полмиллиарда долларов. На сегодняшний день известны свыше тысячи типов приборов для генерации радиоволн, мощность каждого из которых превышает несколько киловатт, но пока наиболее подходит амплитрон — прямой «родственник» прибора, с которого, можно сказать, и началось широкое использование радиолокации…
Во время второй мировой войны американская фирма «Белл» не раз помещала на страницах журналов один и тот же рекламный снимок: часовой с винтовкой охраняет ящичек с большими сургучными печатями. Внизу подпись: «Тут хранится самая большая тайна этой войны». В 1946 году фирма опубликовала снимок с содержанием ящичка. В нем лежал магнетрон — прибор, который имел действительно большое военное значение. Без него не могли бы эффективно работать радары тех лет. Однако тайной магнетрона владели не только Англия и США. Его изобрели и впервые использовали в нашей стране. В 1924 году в Харьковском университете под руководством и по предложению профессора Д. А. Рожанского его учениками начались работы, которые привели к созданию магнетрона. Об этих исследованиях и их результатах сообщил журнал Русского физико-технического общества в 1925 году. Впоследствии харьковские ученые создали экспериментальный радиообнаружитель «Зенит», который был первой радиолокационной станцией, определявшей три координаты цели, что очень важно для управления стрельбой зенитной артиллерии. Испытывался «Зенит» в боевых условиях в 1941 году, защищая небо столицы. Своей трехкоординатностью «Зенит» обязан магнетрону. Он генерировал короткие, дециметровые волны, и при сравнительно небольших размерах антенны можно было определять не только азимут, но и высоту цели (а точнее, связанный с нею угол места цели). В других радиолокаторах, созданных в то время в нашей стране и за рубежом, в качестве передатчиков использовались триодные лампы, которые генерировали более длинные — метровые волны. Поэтому локаторы не могли определять третью координату — высоту цели. Слишком велик должен был быть вертикальный размер антенны.
Лишь позднее в английских станциях появились магнетроны. Начавшаяся Великая Отечественная война не позволила быстро наладить серийный выпуск таких сложных систем, какими являются станции орудийной наводки.
Амплитроны, которые предполагают использовать в радиолинии электропередачи космос — Земля, по существу, модернизированные магнетроны. Для амплитрона характерен высокий коэффициент полезного действия (вполне реальны значения около 90 процентов) и малая удельная масса (отношение полной массы прибора к его выходной мощности). Ученые определили, что если воспользоваться для создания передатчика радиолинии комплектом амплитронов с выходной мощностью каждого в пять киловатт, то оптимальная длина рабочей волны линии электропередачи, при которой масса прибора и его стоимость будут минимальны, составит около 12 сантиметров.
Соперничают с амплитронами другие сверхвысокочастотные приборы — клистроны. Хотя их коэффициент полезного действия меньше (70—80 процентов), стоимость и удельная масса больше, однако они более мощные, и потому их понадобится меньше, чем амплитронов, что облегчит сборку передатчика на орбите.
Для того чтобы передать с орбиты и принять на Земле радиоволны — переносчики электроэнергии, — нужны передающая антенна в космосе и приемная на Земле. Как подсчитали ученые, их оптимальные размеры таковы: передающая антенна около одного километра в диаметре, а приемная около десяти километров. При таких размерах стоимость радиолинии будет минимальной, а коэффициент полезного действия максимальным.
Приемная и передающая антенны должны быть точно ориентированы друг относительно друга. Во-первых, для того, чтобы основная часть энергии, передаваемая с орбиты, не пропадала зря (в принципе потери неизбежны из-за так называемых боковых лепестков антенного луча), и, во-вторых, по соображениям безопасности: ведь интенсивный поток сверхвысокочастотного излучения не безвреден для человека.
Хотя электростанция будет находиться на стационарной орбите, ее точка
Поскольку размеры наземной антенны довольно велики — десять километров в диаметре, то управлять ею довольно сложно. Лучше подстраивать передающую антенну в космосе: ее площадь в сто раз меньше, а сложность электронного управления лучом антенны в первом приближении пропорциональна ее площади. Ориентиром для подстройки луча передающей антенны будет служить тонкий опорный радиолуч, излучаемый наземной антенной.
Приемную антенну можно выполнить в виде большого числа крошечных антенн диполей. (Пример дипольной антенны — индивидуальная внешняя или внутренняя телевизионная антенна, только размер диполя для наземной антенны в несколько раз меньше, так как для телевидения используются метровые волны, а электроэнергию предполагают передавать в коротковолновой части дециметрового диапазона). Приемная антенна будет не только принимать сверхвысокочастотное излучение, но и преобразовывать его в постоянный ток. (Подобные антенны-преобразователи называются ректеннами.) Для этого каждый диполь снабжен миниатюрным выпрямителем, который преобразует радиоизлучение в постоянный ток. Токи всех диполей складываются и либо подаются в высоковольтную сеть постоянного тока, либо преобразуются в напряжение переменного тока. Специалисты подсчитали, что коэффициент полезного действия радиолинии электропередачи, то есть с выхода солнечных батарей до выхода в наземную высоковольтную сеть постоянного тока, составит 58 процентов, а выходная мощность, отдаваемая потребителям, — пять миллионов киловатт. Есть проекты электростанций и на десять миллионов киловатт. Разнятся они главным образом размерами солнечных батарей.
Поскольку каждый диполь снабжен выпрямителем, то ширина луча приемной десятикилометровой антенны будет такой же, как у отдельного маленького диполика, у которого в довольно широком секторе нет резко выраженного направления приема. Поэтому огромную приемную антенну не надо будет ориентировать на передающую антенну, что значительно упростит ее конструкцию. Приемную антенну можно сконструировать таким образом, чтобы она была прозрачной для света. Тогда расположенную под ней территорию можно использовать для других целей, например, для сельского хозяйства.
Выпрямление электрического тока сопровождается тепловыми потерями: выпрямительные диоды будут нагреваться, а тепло передаваться окружающему воздуху. В тепло перейдет не более 15 процентов передаваемого с орбиты излучения, и нагрев атмосферы не превысит нагрева, обычно наблюдаемого над городами.
Как и на орбитальной станции «Салют», на космической электростанции придется ориентировать на Солнце многокилометровые панели солнечных батарей, чтобы солнечные лучи падали на них отвесно. Для электростанции это наивыгоднейший режим работы. Расчеты, проведенные специалистами, показывают, что солнечные батареи должны быть сориентированы относительно Солнца с точностью до 0,5 градуса, а луч передающей антенны радиолинии передачи электроэнергии относительно наземной приемной антенны — с точностью ± 1 градус. Для управления положением и ориентации такой многокилометровой конструкции надо иметь более тысячи корректирующих двигателей. Они будут работать всего 5—10 дней в году. Так что должны быть предусмотрены рейсы космических танкеров для заправки корректирующих двигателей топливом. Для коррекции можно использовать и электронные двигатели. Тогда энергией их обеспечат солнечные батареи, но восполнять запасы рабочего тела все равно придется. В дальнейшем возможно существенное упрощение конструкции, снижение массы и соответственно стоимости космической электростанции, если удастся сделать такую солнечную батарею, чтобы она преобразовывала энергию Солнца сразу же в сверхвысокочастотное излучение (минуя постоянный ток).
По инженерным оценкам, площадь, непригодная для проживания в районе наземного приемного пункта, не будет превышать 270 квадратных километров (круг с радиусом 9,25 километра), из них около 80 квадратных километров займет наземная антенна, а остальные — буферная зона. То есть приемную антенну можно размещать неподалеку от населенных пунктов, а это означает снижение потерь на транспортировку энергии. Вне буферной зоны уровень облучения будет незначительным, меньше допустимой для человека дозы длительного сверхвысокочастотного воздействия.
С Д. Том 16
16. Сердце дракона
Фантастика:
боевая фантастика
рейтинг книги
Ротмистр Гордеев 2
2. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Хуррит
Фантастика:
героическая фантастика
попаданцы
альтернативная история
рейтинг книги
Наследник с Меткой Охотника
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
рейтинг книги
Двойник Короля
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
рейтинг книги
Последняя Арена 3
3. Последняя Арена
Фантастика:
постапокалипсис
рпг
рейтинг книги
Третий. Том 2
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Возлюби болезнь свою
Научно-образовательная:
психология
рейтинг книги
